Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
40641712297181283424594312 ~2022
4064202067019997...84844714 2025
40643301889181286603778312 ~2022
40651114979981302229959912 ~2022
40652712899981305425799912 ~2022
40656275495981312550991912 ~2022
4065930257816830...33120914 2025
40661346551981322693103912 ~2022
40664125652381328251304712 ~2022
40665364097981330728195912 ~2022
40670214062381340428124712 ~2022
40670257481981340514963912 ~2022
40673336252381346672504712 ~2022
4067905575299112...88649714 2025
40679391062381358782124712 ~2022
40688271463181376542926312 ~2022
40689686017181379372034312 ~2022
40692561332381385122664712 ~2022
40696403483981392806967912 ~2022
40697805029981395610059912 ~2022
40698556121981397112243912 ~2022
4069908769971660...81477715 2025
40699145081981398290163912 ~2022
40700514049181401028098312 ~2022
40705743320381411486640712 ~2022
Exponent Prime Factor Dig. Year
40707308773181414617546312 ~2022
4070772849831147...36520715 2025
40707891674381415783348712 ~2022
40710472946381420945892712 ~2022
40711540298381423080596712 ~2022
40713204521981426409043912 ~2022
40714626485981429252971912 ~2022
40716854485181433708970312 ~2022
40718644352381437288704712 ~2022
40724165273981448330547912 ~2022
40725116846381450233692712 ~2022
4073183952411881...60134315 2025
40734481694381468963388712 ~2022
40735090853981470181707912 ~2022
40739188016381478376032712 ~2022
40740354109181480708218312 ~2022
40746691207181493382414312 ~2022
40752241448381504482896712 ~2022
40754129720381508259440712 ~2022
40760646955181521293910312 ~2022
40767705617981535411235912 ~2022
40772491879181544983758312 ~2022
40775057113181550114226312 ~2022
40775078365181550156730312 ~2022
40780379941181560759882312 ~2022
Exponent Prime Factor Dig. Year
40790775673181581551346312 ~2022
40792859533181585719066312 ~2022
40793433553181586867106312 ~2022
40798979851181597959702312 ~2022
40799232701981598465403912 ~2022
40800036829181600073658312 ~2022
40803213662381606427324712 ~2022
40808746028381617492056712 ~2022
40810923476381621846952712 ~2022
40812417350381624834700712 ~2022
40817160770381634321540712 ~2022
40829143093181658286186312 ~2022
40832169685181664339370312 ~2022
40832599907981665199815912 ~2022
40833163628381666327256712 ~2022
40835102144381670204288712 ~2022
40837774717181675549434312 ~2022
40839179411981678358823912 ~2022
40840156931981680313863912 ~2022
40841341331981682682663912 ~2022
40842442445981684884891912 ~2022
40842617342381685234684712 ~2022
40846232063981692464127912 ~2022
40849295005181698590010312 ~2022
40849813784381699627568712 ~2022
Exponent Prime Factor Dig. Year
40853870827181707741654312 ~2022
40853971901981707943803912 ~2022
40855290992381710581984712 ~2022
40855582448381711164896712 ~2022
40857763490381715526980712 ~2022
40858111861181716223722312 ~2022
40866323303981732646607912 ~2022
40871832589181743665178312 ~2022
40885012583981770025167912 ~2022
40885392752381770785504712 ~2022
40885749031181771498062312 ~2022
40885837481981771674963912 ~2022
40889474171981778948343912 ~2022
40891573964381783147928712 ~2022
40894050637181788101274312 ~2022
40898060077181796120154312 ~2022
40898067187181796134374312 ~2022
40898491117181796982234312 ~2022
40909733783981819467567912 ~2022
40910861342381821722684712 ~2022
40915261160381830522320712 ~2022
40915810135181831620270312 ~2022
40915987315181831974630312 ~2022
40917272978381834545956712 ~2022
40918301492381836602984712 ~2022
Home
4.903.097 digits
e-mail
25-07-08