Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
40760646955181521293910312 ~2022
4076330621218397...79692714 2025
40767705617981535411235912 ~2022
40772491879181544983758312 ~2022
40775057113181550114226312 ~2022
40775078365181550156730312 ~2022
4077995998818482...77524914 2025
40780379941181560759882312 ~2022
40790775673181581551346312 ~2022
40792859533181585719066312 ~2022
40793433553181586867106312 ~2022
40798979851181597959702312 ~2022
40799232701981598465403912 ~2022
40800036829181600073658312 ~2022
40803213662381606427324712 ~2022
40808746028381617492056712 ~2022
40810923476381621846952712 ~2022
40812417350381624834700712 ~2022
40817160770381634321540712 ~2022
40829143093181658286186312 ~2022
40832169685181664339370312 ~2022
40832599907981665199815912 ~2022
40833163628381666327256712 ~2022
40835102144381670204288712 ~2022
40837774717181675549434312 ~2022
Exponent Prime Factor Dig. Year
40839179411981678358823912 ~2022
40840156931981680313863912 ~2022
40841341331981682682663912 ~2022
40842442445981684884891912 ~2022
40842617342381685234684712 ~2022
40846232063981692464127912 ~2022
40849295005181698590010312 ~2022
40849813784381699627568712 ~2022
40853870827181707741654312 ~2022
40853971901981707943803912 ~2022
40855290992381710581984712 ~2022
40855582448381711164896712 ~2022
40857763490381715526980712 ~2022
40858111861181716223722312 ~2022
40866323303981732646607912 ~2022
4087120446591479...16655915 2025
40871832589181743665178312 ~2022
4087828830717194...42049714 2025
4088064396231250...52463915 2025
40885012583981770025167912 ~2022
40885392752381770785504712 ~2022
40885749031181771498062312 ~2022
40885837481981771674963912 ~2022
40889474171981778948343912 ~2022
40891573964381783147928712 ~2022
Exponent Prime Factor Dig. Year
40894050637181788101274312 ~2022
40898060077181796120154312 ~2022
40898067187181796134374312 ~2022
40898491117181796982234312 ~2022
40909733783981819467567912 ~2022
40910861342381821722684712 ~2022
40915261160381830522320712 ~2022
40915810135181831620270312 ~2022
40915987315181831974630312 ~2022
40917272978381834545956712 ~2022
40918301492381836602984712 ~2022
40921249591181842499182312 ~2022
40924163671181848327342312 ~2022
40933044331181866088662312 ~2022
40933780826381867561652712 ~2022
40935567494381871134988712 ~2022
40938025034381876050068712 ~2022
40941610223981883220447912 ~2022
40941755717981883511435912 ~2022
40941829345181883658690312 ~2022
40942736603981885473207912 ~2022
40943723029181887446058312 ~2022
40947959096381895918192712 ~2022
40948459289981896918579912 ~2022
40949415611981898831223912 ~2022
Exponent Prime Factor Dig. Year
40953866377181907732754312 ~2022
40958946097181917892194312 ~2022
40960802911181921605822312 ~2022
40962144791981924289583912 ~2022
40962691049981925382099912 ~2022
40972307735981944615471912 ~2022
40979052673181958105346312 ~2022
40981437164381962874328712 ~2022
40986277945181972555890312 ~2022
40986502633181973005266312 ~2022
40987951022381975902044712 ~2022
40988775851981977551703912 ~2022
40988945767181977891534312 ~2022
40989584545181979169090312 ~2022
40993089115181986178230312 ~2022
40998380237981996760475912 ~2022
41001206822382002413644712 ~2022
41002547209182005094418312 ~2022
41007738769182015477538312 ~2022
41010548761182021097522312 ~2022
41011541761182023083522312 ~2022
41013196058382026392116712 ~2022
41015677709982031355419912 ~2022
41015749259982031498519912 ~2022
41017160486382034320972712 ~2022
Home
4.918.085 digits
e-mail
25-07-13