Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
508040595080405919 ~1993
508048431016096879 ~1991
508057191016114399 ~1991
508065711016131439 ~1991
508069494064555939 ~1993
50809237203236948110 ~1994
508092594064740739 ~1993
508093213048559279 ~1992
508096311016192639 ~1991
50811469111785231910 ~1994
508136991016273999 ~1991
508140174065121379 ~1993
508161591016323199 ~1991
508173591016347199 ~1991
508179111016358239 ~1991
508199631016399279 ~1991
508203918131262579 ~1993
50820529518369395910 ~1995
508211391016422799 ~1991
508223773049342639 ~1992
508223991016447999 ~1991
508228791016457599 ~1991
508257831016515679 ~1991
508258974066071779 ~1993
508262213049573279 ~1992
Exponent Prime Factor Digits Year
508281591016563199 ~1991
50829673121991215310 ~1994
508298413049790479 ~1992
508302714066421699 ~1993
508326733049960399 ~1992
508335111016670239 ~1991
508355631016711279 ~1991
508359711016719439 ~1991
508361511016723039 ~1991
508369494066955939 ~1993
508375373050252239 ~1992
508385213050311279 ~1992
508385631016771279 ~1991
508401297117618079 ~1993
50841341650769164910 ~1996
508416711016833439 ~1991
508427511016855039 ~1991
508432074067456579 ~1993
508436235084362319 ~1993
508436574067492579 ~1993
508437831016875679 ~1991
508438399151891039 ~1994
508439511016879039 ~1991
508453311016906639 ~1991
508454991016909999 ~1991
Exponent Prime Factor Digits Year
508476733050860399 ~1992
508481631016963279 ~1991
508484391016968799 ~1991
508487814067902499 ~1993
508506231017012479 ~1991
508506711017013439 ~1991
508512591017025199 ~1991
508512594068100739
508539831017079679 ~1991
508541031017082079 ~1991
508583031017166079 ~1991
508589391017178799 ~1991
508598991017197999 ~1991
508600791017201599 ~1991
508600911017201839 ~1991
508602231017204479 ~1991
508603911017207839 ~1991
508620599155170639 ~1994
508631391017262799 ~1991
508633911017267839 ~1991
508645431017290879 ~1991
508669431017338879 ~1991
508678191017356399 ~1991
508697333052183999 ~1992
50872259824130595910 ~1996
Exponent Prime Factor Digits Year
508741191017482399 ~1991
508746231017492479 ~1991
508767294070138339 ~1993
508775511017551039 ~1991
50877791162808931310 ~1994
508779733052678399 ~1992
508790391017580799 ~1991
508796511017593039 ~1991
508851231017702479 ~1991
508856991017713999 ~1991
508884831017769679 ~1991
508890174071121379 ~1993
508891014071128099 ~1993
508897911017795839 ~1991
508902111017804239 ~1991
508903733053422399 ~1992
508907333053443999 ~1992
508910173053461039 ~1992
508913631017827279 ~1991
508925991017851999 ~1991
508935435089354319 ~1993
508936933053621599 ~1992
508957813053746879 ~1992
508959831017919679 ~1991
50896051213763414310 ~1994
Home
4.724.182 digits
e-mail
25-04-13