Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
520098231040196479 ~1991
520099311040198639 ~1991
520116111040232239 ~1991
520127391040254799 ~1991
520130631040261279 ~1991
520134111040268239 ~1991
520147311040294639 ~1991
520150311040300639 ~1991
520170111040340239 ~1991
520172991040345999 ~1991
520178631040357279 ~1991
52019203593018914310 ~1996
520195311040390639 ~1991
520203831040407679 ~1991
520205391040410799 ~1991
520216311040432639 ~1991
520230111040460239 ~1991
520241631040483279 ~1991
520266733121600399 ~1992
520276911040553839 ~1991
520277279364990879 ~1994
520281111040562239 ~1991
520289094162312739 ~1993
520289391040578799 ~1991
520310991040621999 ~1991
Exponent Prime Factor Digits Year
520320591040641199 ~1991
520324191040648399 ~1991
52032809166504988910 ~1994
520333133121998799 ~1992
520337031040674079 ~1991
520340413122042479 ~1992
520361991040723999 ~1991
520382573122295439 ~1992
520389111040778239 ~1991
520396977285557599 ~1993
520403991040807999 ~1991
520410231040820479 ~1991
520411613122469679 ~1992
520414137285797839 ~1993
520416231040832479 ~1991
520422711040845439 ~1991
520449111040898239 ~1991
520452711040905439 ~1991
520459911040919839 ~1991
520465733122794399 ~1992
520479231040958479 ~1991
520493631040987279 ~1991
520494111040988239 ~1991
520497435204974319 ~1993
520507311041014639 ~1991
Exponent Prime Factor Digits Year
520519973123119839 ~1992
520536915205369119 ~1993
520542373123254239 ~1992
520542591041085199 ~1991
520555791041111599 ~1991
520563414164507299 ~1993
520581013123486079 ~1992
520581831041163679 ~1991
520583391041166799 ~1991
520594794164758339 ~1993
520596711041193439 ~1991
520606373123638239 ~1992
520610991041221999 ~1991
520630191041260399 ~1991
520630791041261599 ~1991
520647231041294479 ~1991
520659711041319439 ~1991
52067207291576359310 ~1995
520672191041344399 ~1991
520673031041346079 ~1991
52067363124961671310 ~1994
520678911041357839 ~1991
520693791041387599 ~1991
520699311041398639 ~1991
520699911041399839 ~1991
Exponent Prime Factor Digits Year
520702373124214239 ~1992
520704894165639139 ~1993
520715533124293199 ~1992
520722711041445439 ~1991
520727994165823939 ~1993
520729133124374799 ~1992
520729911041459839 ~1991
520742715207427119 ~1993
520762674166101379 ~1993
520764711041529439 ~1991
520795373124772239 ~1992
520797591041595199 ~1991
520804497291262879 ~1993
520807791041615599 ~1991
520820031041640079 ~1991
520825311041650639 ~1991
520846911041693839 ~1991
520861431041722879 ~1991
520881711041763439 ~1991
520890018334240179 ~1993
520904031041808079 ~1991
520906311041812639 ~1991
520928631041857279 ~1991
520941231041882479 ~1991
520954191041908399 ~1991
Home
4.724.182 digits
e-mail
25-04-13