Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
520954791041909599 ~1991
520973279377518879 ~1994
520977231041954479 ~1991
521001831042003679 ~1991
521004591042009199 ~1991
521010177294142399 ~1993
521032311042064639 ~1991
521041791042083599 ~1991
521043231042086479 ~1991
521049711042099439 ~1991
521050074168400579 ~1993
521058111042116239 ~1991
521071191042142399 ~1991
52107667177166067910 ~1994
521080191042160399 ~1991
521090694168725539 ~1993
521107311042214639 ~1991
521109231042218479 ~1991
521122791042245599 ~1991
521158878338541939 ~1993
521161311042322639 ~1991
521165031042330079 ~1991
521174773127048639 ~1992
521174879381147679 ~1994
521183694169469539 ~1993
Exponent Prime Factor Digits Year
521194911042389839 ~1991
52120709166786268910 ~1994
521224818339596979 ~1993
521227431042454879 ~1991
521235231042470479 ~1991
521235591042471199 ~1991
521239431042478879 ~1991
521244613127467679 ~1992
521245374169962979 ~1993
521248431042496879 ~1991
521250111042500239 ~1991
521259594170076739 ~1993
521268013127608079 ~1992
521271711042543439 ~1991
521278614170228899 ~1993
521285511042571039 ~1991
521291511042583039 ~1991
521307591042615199 ~1991
521335191042670399 ~1991
521354274170834179 ~1993
521367831042735679 ~1991
521375115213751119 ~1993
521382831042765679 ~1991
521392911042785839 ~1991
521401911042803839 ~1991
Exponent Prime Factor Digits Year
521423333128539999 ~1992
521429031042858079 ~1991
521438031042876079 ~1991
521454591042909199 ~1991
521462991042925999 ~1991
521471631042943279 ~1991
521474991042949999 ~1991
521476431042952879 ~1991
521478711042957439 ~1991
521530191043060399 ~1991
52153369281628192710 ~1995
521533791043067599 ~1991
521538231043076479 ~1991
521541591043083199 ~1991
521562591043125199 ~1991
521563431043126879 ~1991
52159249114750347910 ~1994
521598231043196479 ~1991
521602191043204399 ~1991
521608311043216639 ~1991
521609391043218799 ~1991
521613594172908739 ~1993
521625591043251199 ~1991
521627511043255039 ~1991
521628711043257439 ~1991
Exponent Prime Factor Digits Year
521631591043263199 ~1991
521632311043264639 ~1991
521636511043273039 ~1991
521645097303031279 ~1993
521678333130069999 ~1992
521679711043359439 ~1991
521707911043415839 ~1991
52173809281738568710 ~1995
521745711043491439 ~1991
521751413130508479 ~1992
52175807511322908710 ~1995
521759874174078979 ~1993
521766133130596799 ~1992
521796231043592479 ~1991
521858511043717039 ~1991
521862231043724479 ~1991
521881791043763599 ~1991
521899191043798399 ~1991
521905431043810879 ~1991
521907111043814239 ~1991
521918475219184719 ~1993
521919111043838239 ~1991
521923911043847839 ~1991
521924533131547199 ~1992
521927333131563999 ~1992
Home
4.724.182 digits
e-mail
25-04-13