Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1062467992124935999 ~1994
1062469792124939599 ~1994
106248631701240964710 ~1997
1062488992124977999 ~1994
106249333254998399310 ~1996
1062510232125020479 ~1994
106252933233756452710 ~1996
1062561232125122479 ~1994
1062584992125169999 ~1994
1062594298500754339 ~1995
1062607792125215599 ~1994
1062609112125218239 ~1994
1062644512125289039 ~1994
106265141828868099910 ~1998
1062698816376192879 ~1995
1062746398501971139 ~1995
1062757912125515839 ~1994
1062794512125589039 ~1994
106283147276336182310 ~1996
1062853078502824579 ~1995
1062866416377198479 ~1995
106287149148802008710 ~1996
1062884998503079939 ~1995
1062896992125793999 ~1994
1062927592125855199 ~1994
Exponent Prime Factor Digits Year
1062953032125906079 ~1994
1062972112125944239 ~1994
1062972312296020189711 ~1999
1062974632125949279 ~1994
1062994432125988879 ~1994
1063006192126012399 ~1994
1063018792126037599 ~1994
1063024616378147679 ~1995
106302787191345016710 ~1996
1063035832126071679 ~1994
1063052392126104799 ~1994
1063086232126172479 ~1994
1063100032126200079 ~1994
1063106512126213039 ~1994
106310747191359344710 ~1996
1063136098505088739 ~1995
1063151032126302079 ~1994
1063157992126315999 ~1994
1063169278505354179 ~1995
1063169392126338799 ~1994
1063172512126345039 ~1994
1063193218505545699 ~1995
1063218232126436479 ~1994
1063247278505978179 ~1995
1063288016379728079 ~1995
Exponent Prime Factor Digits Year
106333973148867562310 ~1996
106334149233935127910 ~1996
1063357912126715839 ~1994
1063370392126740799 ~1994
1063375498507003939 ~1995
1063429792126859599 ~1994
1063443616380661679 ~1995
1063474312126948639 ~1994
1063498912126997839 ~1994
1063576136381456799 ~1995
1063585376381512239 ~1995
1063662016381972079 ~1995
1063687978509503779 ~1995
1063706398509651139 ~1995
106372099191469778310 ~1996
1063780432127560879 ~1994
1063794592127589199 ~1994
106384843425539372110 ~1997
106389817170223707310 ~1996
1063903792127807599 ~1994
106391563255339751310 ~1996
1063921192127842399 ~1994
1063929112127858239 ~1994
1064002432128004879 ~1994
1064004712128009439 ~1994
Exponent Prime Factor Digits Year
106400579532002895110 ~1997
1064023576384141439 ~1995
1064031832128063679 ~1994
1064035736384214399 ~1995
1064041312128082639 ~1994
106405861234092894310 ~1996
106406263170250020910 ~1996
1064073136384438799 ~1995
1064096512128193039 ~1994
1064098192128196399 ~1994
1064108512128217039 ~1994
1064109592128219199 ~1994
1064118592128237199 ~1994
1064160478513283779 ~1995
1064204392128408799 ~1994
1064208592128417199 ~1994
1064216698513733539 ~1995
1064219512128439039 ~1994
1064224432128448879 ~1994
1064260576385563439 ~1995
106430939191575690310 ~1996
1064316232128632479 ~1994
1064332792128665599 ~1994
106437181170299489710 ~1996
1064384816386308879 ~1995
Home
4.739.325 digits
e-mail
25-04-20