Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1693925513387851039 ~1995
169393199135514559310 ~1997
1693956233387912479 ~1995
1693974713387949439 ~1995
1693989593387979199 ~1995
1694001233388002479 ~1995
169402657101641594310 ~1996
1694059913388119839 ~1995
169414361101648616710 ~1996
1694163113388326239 ~1995
169418057101650834310 ~1996
1694353913388707839 ~1995
169435577135548461710 ~1997
1694416313388832639 ~1995
169442501101665500710 ~1996
169448857271118171310 ~1997
1694601713389203439 ~1995
169463773101678263910 ~1996
169463933237249506310 ~1997
1694693513389387039 ~1995
1694738033389476079 ~1995
1694773031220236581711 ~1999
1694777993389555999 ~1995
1694779913389559839 ~1995
1694844113389688239 ~1995
Exponent Prime Factor Digits Year
169485763271177220910 ~1997
1694876513389753039 ~1995
1694884913389769839 ~1995
1694994113389988239 ~1995
169500173101700103910 ~1996
1695007872339110860711 ~2000
1695057233390114479 ~1995
169508077406819384910 ~1998
1695090713390181439 ~1995
169509719135607775310 ~1997
1695105593390211199 ~1995
1695108233390216479 ~1995
169513621101708172710 ~1996
169515763271225220910 ~1997
1695160793390321599 ~1995
1695178913390357839 ~1995
1695289793390579599 ~1995
1695338633390677279 ~1995
169534241135627392910 ~1997
169540561271264897710 ~1997
169542371135633896910 ~1997
1695434633390869279 ~1995
1695443513390887039 ~1995
1695451193390902399 ~1995
169545119135636095310
Exponent Prime Factor Digits Year
1695483833390967679 ~1995
1695503513391007039 ~1995
1695635993391271999 ~1995
1695689633391379279 ~1995
1695729713391459439 ~1995
169575647135660517710 ~1997
169581547271330475310 ~1997
1695818033391636079 ~1995
1695851513391703039 ~1995
1695871913391743839 ~1995
1695880193391760399 ~1995
169590077101754046310 ~1996
169590101135672080910 ~1997
169595773101757463910 ~1996
1696066991526460291111 ~1999
169608743542747977710 ~1998
169610657101766394310 ~1996
169610843440988191910 ~1998
1696142393392284799 ~1995
169614629237460480710 ~1997
169615049237461068710 ~1997
1696151393392302799 ~1995
1696160033392320079 ~1995
169618679305313622310 ~1998
1696218113392436239 ~1995
Exponent Prime Factor Digits Year
1696292633392585279 ~1995
1696347713392695439 ~1995
169635451169635451110 ~1997
1696400393392800799 ~1995
1696402313392804639 ~1995
1696430033392860079 ~1995
169646857101788114310 ~1996
169650121373230266310 ~1998
1696501274478763352911 ~2000
169652297135721837710 ~1997
1696548713393097439 ~1995
1696593833393187679 ~1995
169661441101796864710 ~1996
1696681793393363599 ~1995
1696686233393372479 ~1995
169679381101807628710 ~1996
1696797593393595199 ~1995
1696837433393674879 ~1995
1696844393393688799 ~1995
1696879433393758879 ~1995
1696900433393800879 ~1995
169690181135752144910 ~1997
1696968233393936479 ~1995
1697062193394124399 ~1995
1697072033394144079 ~1995
Home
4.739.325 digits
e-mail
25-04-20