Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1697179793394359599 ~1995
1697238113394476239 ~1995
1697273393394546799 ~1995
169742171543174947310 ~1998
169745777101847466310 ~1996
1697505713395011439 ~1995
1697526233395052479 ~1995
169755017101853010310 ~1996
169757177135805741710 ~1997
169760273101856163910 ~1996
1697617433395234879 ~1995
169764271169764271110 ~1997
1697669633395339279 ~1995
1697678633395357279 ~1995
1697729033395458079 ~1995
1697778593395557199 ~1995
169778831135823064910 ~1997
169780601101868360710 ~1996
1697929193395858399 ~1995
1697948513395897039 ~1995
1697958233395916479 ~1995
1697963513395927039 ~1995
169797301101878380710 ~1996
1697999633395999279 ~1995
1698020633396041279 ~1995
Exponent Prime Factor Digits Year
1698117233396234479 ~1995
1698118193396236399 ~1995
1698128033396256079 ~1995
1698206993396413999 ~1995
169820969135856775310 ~1997
1698278513396557039 ~1995
1698285233396570479 ~1995
169829761101897856710 ~1996
1698364793396729599 ~1995
1698534233397068479 ~1995
169853753101912251910 ~1996
1698549113397098239 ~1995
1698570713397141439 ~1995
1698631913397263839 ~1995
169863581101918148710 ~1996
169864193101918515910 ~1996
169879217101927530310 ~1996
1698805193397610399 ~1995
1698856931087268435311 ~1999
1698864713397729439 ~1995
1698873593397747199 ~1995
169893013101935807910 ~1996
1698971033397942079 ~1995
1699014233398028479 ~1995
169904083271846532910 ~1997
Exponent Prime Factor Digits Year
1699043633398087279 ~1995
1699046993398093999 ~1995
1699091393398182799 ~1995
1699099913398199839 ~1995
1699151393398302799 ~1995
169916063441781763910 ~1998
1699179713398359439 ~1995
1699189793398379599 ~1995
1699193633398387279 ~1995
1699274513398549039 ~1995
1699283993398567999 ~1995
1699315793398631599 ~1995
1699330313398660639 ~1995
169933333407839999310 ~1998
169935421271896673710 ~1997
169937597135950077710 ~1997
1699377833398755679 ~1995
1699389713398779439 ~1995
1699447793398895599 ~1995
1699499993398999999 ~1995
1699518713399037439 ~1995
1699537793399075599 ~1995
1699602233399204479 ~1995
1699614713399229439 ~1995
169966793101980075910 ~1996
Exponent Prime Factor Digits Year
1699712393399424799 ~1995
1699719113399438239 ~1995
1699728113399456239 ~1995
169980401101988240710 ~1996
1699826393399652799 ~1995
169986053101991631910 ~1996
1699920833399841679 ~1995
169994959169994959110 ~1997
169996721101998032710 ~1996
1700015633400031279 ~1995
170006393102003835910 ~1996
1700170793400341599 ~1995
1700219033400438079 ~1995
1700266632040319956111 ~2000
1700275793400551599 ~1995
1700321513400643039 ~1995
1700326193400652399 ~1995
1700348033400696079 ~1995
1700359193400718399 ~1995
170037433102022459910 ~1996
1700412113400824239 ~1995
1700442233400884479 ~1995
1700445713400891439 ~1995
170044993272071988910 ~1997
170059013102035407910 ~1996
Home
4.739.325 digits
e-mail
25-04-20