Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
181780213109068127910 ~1997
181787849145430279310 ~1997
1817903813744881848711 ~2000
1817993633635987279 ~1995
181803019181803019110 ~1997
1818064793636129599 ~1995
1818077993636155999 ~1995
181808747145446997710 ~1997
1818098993636197999 ~1995
1818224993636449999 ~1995
181823197109093918310 ~1997
1818258233636516479 ~1995
1818263033636526079 ~1995
1818266993636533999 ~1995
1818306113636612239 ~1995
1818403313636806639 ~1995
181842527327316548710 ~1998
181842937109105762310 ~1997
1818454313636908639 ~1995
1818570233637140479 ~1995
1818620033637240079 ~1995
1818644513637289039 ~1995
1818654593637309199 ~1995
1818747233637494479 ~1995
181874887436499728910 ~1998
Exponent Prime Factor Digits Year
1818767033637534079 ~1995
1818800633637601279 ~1995
1818864233637728479 ~1995
181887191145509752910 ~1997
1818914033637828079 ~1995
1818975593637951199 ~1995
1818986033637972079 ~1995
1819006433638012879 ~1995
1819024433638048879 ~1995
181905541109143324710 ~1997
181906141109143684710 ~1997
181912723181912723110 ~1997
1819134113638268239 ~1995
181915213109149127910 ~1997
181923697109154218310 ~1997
181924619327464314310 ~1998
1819333433638666879 ~1995
1819340993638681999 ~1995
181935557691355116710 ~1999
1819362833638725679 ~1995
1819363793638727599 ~1995
181941281145553024910 ~1997
181953053109171831910 ~1997
1819569593639139199 ~1995
181960459727841836110 ~1999
Exponent Prime Factor Digits Year
1819634033639268079 ~1995
181965653109179391910 ~1997
1819656593639313199 ~1995
1819720193639440399 ~1995
1819745633639491279 ~1995
181976429254767000710 ~1998
1819788833639577679 ~1995
1819811993639623999 ~1995
181981831764323690310 ~1999
1819820513639641039 ~1995
1819880393639760799 ~1995
181988449545965347110 ~1998
1820020913640041839 ~1995
182005121109203072710 ~1997
1820114513640229039 ~1995
1820148833640297679 ~1995
182017201546051603110 ~1998
182019917109211950310 ~1997
1820210513640421039 ~1995
1820217833640435679 ~1995
182021857109213114310 ~1997
1820270633640541279 ~1995
1820395313640790639 ~1995
1820422793640845599 ~1995
182047709582552668910 ~1998
Exponent Prime Factor Digits Year
1820489393640978799 ~1995
1820561033641122079 ~1995
182059169145647335310 ~1997
1820595233641190479 ~1995
182061151327710071910 ~1998
1820626193641252399 ~1995
182063807145651045710 ~1997
1820726993641453999 ~1995
182073161691878011910 ~1999
182078027145662421710 ~1997
18208051111398239988712 ~2002
1820913593641827199 ~1995
182098487145678789710 ~1997
182099927145679941710 ~1997
1821017633642035279 ~1995
1821020033642040079 ~1995
182104597109262758310 ~1997
1821067193642134399 ~1995
1821074633642149279 ~1995
1821093593642187199 ~1995
1821142793642285599 ~1995
1821187872185425444111 ~2000
1821218393642436799 ~1995
182125609400676339910 ~1998
1821272993642545999 ~1995
Home
4.739.325 digits
e-mail
25-04-20