Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1821284513642569039 ~1995
1821399833642799679 ~1995
1821501833643003679 ~1995
182150401109290240710 ~1997
1821594233643188479 ~1995
182181991182181991110 ~1997
182188537109313122310 ~1997
1821903113643806239 ~1995
182193251145754600910 ~1997
182194459182194459110 ~1997
1822001033644002079 ~1995
1822018913644037839 ~1995
182203097109321858310 ~1997
182207021109324212710 ~1997
1822140233644280479 ~1995
1822212113644424239 ~1995
1822218113644436239 ~1995
182226259182226259110 ~1997
1822277633644555279 ~1995
182235433109341259910 ~1997
182236757109342054310 ~1997
1822398593644797199 ~1995
182249281109349568710 ~1997
1822495193644990399 ~1995
182250449145800359310 ~1997
Exponent Prime Factor Digits Year
182250661109350396710 ~1997
1822514033645028079 ~1995
1822517393645034799 ~1995
1822521833645043679 ~1995
1822535633645071279 ~1995
182255873255158222310 ~1998
1822563593645127199 ~1995
182261701109357020710 ~1997
1822667513645335039 ~1995
1822717793645435599 ~1995
1822736993645473999 ~1995
1822749491713384520711 ~2000
182277371874931380910 ~1999
1822793513645587039 ~1995
1822798433645596879 ~1995
182280181109368108710 ~1997
1822846433645692879 ~1995
1822852671749938563311 ~2000
1822909313645818639 ~1995
1822920833645841679 ~1995
1823092433646184879 ~1995
182312681145850144910 ~1997
1823161193646322399 ~1995
1823174513646349039 ~1995
182320093291712148910 ~1998
Exponent Prime Factor Digits Year
182320357109392214310 ~1997
182323577109394146310 ~1997
1823278913646557839 ~1995
1823290131750358524911 ~2000
1823361833646723679 ~1995
1823367833646735679 ~1995
1823373833646747679 ~1995
1823396393646792799 ~1995
1823411513646823039 ~1995
1823479433646958879 ~1995
182360771474138004710 ~1998
182377079145901663310 ~1997
1823777331459021864111 ~1999
1823825033647650079 ~1995
1823892113647784239 ~1995
1823930633647861279 ~1995
182396531145917224910 ~1997
1823967833647935679 ~1995
1823979833647959679 ~1995
1824044993648089999 ~1995
182404801109442880710 ~1997
1824087713648175439 ~1995
1824163131021531352911 ~1999
182419157109451494310 ~1997
1824199433648398879 ~1995
Exponent Prime Factor Digits Year
182424409875637163310 ~1999
1824328193648656399 ~1995
182435741109461444710 ~1997
1824357833648715679 ~1995
182436557109461934310 ~1997
1824375713648751439 ~1995
182438077109462846310 ~1997
1824418793648837599 ~1995
1824466193648932399 ~1995
1824471233648942479 ~1995
1824508193649016399 ~1995
182455901145964720910 ~1997
182457167145965733710 ~1997
1824621233649242479 ~1995
182468417109481050310 ~1997
1824692993649385999 ~1995
1824693833649387679 ~1995
182472887145978309710 ~1997
1824758513649517039 ~1995
1824762713649525439 ~1995
1824769193649538399 ~1995
182479777109487866310 ~1997
1824810593649621199 ~1995
1824863033649726079 ~1995
182491961145993568910 ~1997
Home
4.739.325 digits
e-mail
25-04-20