Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
186462847186462847110 ~1997
186463493111878095910 ~1997
1864669793729339599 ~1996
1864747913729495839 ~1996
1864825193729650399 ~1996
1864846313729692639 ~1996
1864901513729803039 ~1996
1864936913729873839 ~1996
1864963793729927599 ~1996
1864994033729988079 ~1996
186500033111900019910 ~1997
186500477261100667910 ~1998
1865043713730087439 ~1996
1865207513730415039 ~1996
1865242913730485839 ~1996
186524431335743975910 ~1998
1865269193730538399 ~1996
1865349233730698479 ~1996
186537479149229983310 ~1997
1865390291007310756711 ~1999
1865411393730822799 ~1996
186542947335777304710 ~1998
186544753111926851910 ~1997
1865654993731309999 ~1996
1865705513731411039 ~1996
Exponent Prime Factor Digits Year
1865738993731477999 ~1996
186578533298525652910 ~1998
186584477149267581710 ~1997
186584701111950820710 ~1997
186589369447814485710 ~1998
186599459783717727910 ~1999
1866019313732038639 ~1996
1866019913732039839 ~1996
1866020993732041999 ~1996
186606397111963838310 ~1997
186606533261249146310 ~1998
1866232433732464879 ~1996
1866238313732476639 ~1996
1866306233732612479 ~1996
1866324233732648479 ~1996
1866337313732674639 ~1996
186638743298621988910 ~1998
1866423833732847679 ~1996
1866451913732903839 ~1996
1866472433732944879 ~1996
1866509633733019279 ~1996
1866511913733023839 ~1996
1866543233733086479 ~1996
1866577913733155839 ~1996
1866670313733340639 ~1996
Exponent Prime Factor Digits Year
186671531149337224910 ~1997
1866716033733432079 ~1996
1866796793733593599 ~1996
1866797393733594799 ~1996
1866821033733642079 ~1996
1866838793733677599 ~1996
1866870713733741439 ~1996
1866898193733796399 ~1996
1867005233734010479 ~1996
1867091993734183999 ~1996
1867139033734278079 ~1996
186714701112028820710 ~1997
1867191713734383439 ~1996
1867235993734471999 ~1996
1867341833734683679 ~1996
1867400033734800079 ~1996
1867419113734838239 ~1996
1867436814145709718311 ~2001
186745751149396600910 ~1997
1867630193735260399 ~1996
1867639313735278639 ~1996
1867658513735317039 ~1996
186767261149413808910 ~1997
1867685393735370799 ~1996
1867718633735437279 ~1996
Exponent Prime Factor Digits Year
1867797833735595679 ~1996
1867811513735623039 ~1996
1867845113735690239 ~1996
1868034833736069679 ~1996
1868054033736108079 ~1996
186812761560438283110 ~1998
186820457112092274310 ~1997
1868248313736496639 ~1996
1868270513736541039 ~1996
1868294633736589279 ~1996
1868352233736704479 ~1996
186838217112102930310 ~1997
186840161112104096710 ~1997
1868431193736862399 ~1996
186844877261582827910 ~1998
186846353261584894310 ~1998
1868512793737025599 ~1996
1868536433737072879 ~1996
1868550233737100479 ~1996
1868593913737187839 ~1996
186860111149488088910 ~1997
1868625233737250479 ~1996
1868690513737381039 ~1996
1868728793737457599 ~1996
1868757233737514479 ~1996
Home
4.739.325 digits
e-mail
25-04-20