Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1707182633414365279 ~1995
170718341102431004710 ~1996
170718619170718619110 ~1997
1707191633414383279 ~1995
170724613102434767910 ~1996
170726069136580855310 ~1997
1707271433414542879 ~1995
170729311307312759910 ~1998
1707331193414662399 ~1995
1707355313414710639 ~1995
1707365393414730799 ~1995
1707367193414734399 ~1995
1707379913414759839 ~1995
1707415793414831599 ~1995
1707551633415103279 ~1995
1707558833415117679 ~1995
1707560393415120799 ~1995
1707570113415140239 ~1995
1707596633415193279 ~1995
170760433102456259910 ~1996
170764459409834701710 ~1998
1707677993415355999 ~1995
170769419136615535310 ~1997
1707773033415546079 ~1995
1707793193415586399 ~1995
Exponent Prime Factor Digits Year
170785841102471504710 ~1996
1707897713415795439 ~1995
1707904193415808399 ~1995
1707932633415865279 ~1995
1708026833416053679 ~1995
1708031513416063039 ~1995
1708039313416078639 ~1995
1708048913416097839 ~1995
170808577683234308110 ~1998
1708173593416347199 ~1995
170819507854097535110 ~1999
1708275713416551439 ~1995
170829641102497784710 ~1996
1708321313416642639 ~1995
170836453102501871910 ~1996
170841563717534564710 ~1999
1708416593416833199 ~1995
1708433393416866799 ~1995
1708433993416867999 ~1995
170845889136676711310 ~1997
1708492193416984399 ~1995
1708508993417017999 ~1995
1708558193417116399 ~1995
1708631633417263279 ~1995
1708637993417275999 ~1995
Exponent Prime Factor Digits Year
1708653233417306479 ~1995
170873057102523834310 ~1996
1708734713417469439 ~1995
170875247410100592910 ~1998
1708769633417539279 ~1995
170877173102526303910 ~1996
1708772633417545279 ~1995
1708810193417620399 ~1995
1708813913417627839 ~1995
1708875233417750479 ~1995
170895553102537331910 ~1996
170900087136720069710 ~1997
1709003513418007039 ~1995
1709008433418016879 ~1995
1709116793418233599 ~1995
1709125193418250399 ~1995
1709179313418358639 ~1995
170923381512770143110 ~1998
170929739136743791310 ~1997
1709371913418743839 ~1995
1709391833418783679 ~1995
1709395913418791839 ~1995
1709442233418884479 ~1995
1709453993418907999 ~1995
1709456393418912799 ~1995
Exponent Prime Factor Digits Year
1709536313419072639 ~1995
1709690033419380079 ~1995
170969219547101500910 ~1998
1709697833419395679 ~1995
1709706713419413439 ~1995
170974567273559307310 ~1997
1709790593419581199 ~1995
1709798393419596799 ~1995
170987321136789856910 ~1997
1709923219541371511911 ~2001
1709983193419966399 ~1995
170998621102599172710 ~1996
171007541102604524710 ~1996
1710196193420392399 ~1995
1710284393420568799 ~1995
1710314393420628799 ~1995
171032791273652465710 ~1998
1710355193420710399 ~1995
171035617273656987310 ~1998
171043261102625956710 ~1996
1710435833420871679 ~1995
1710517193421034399 ~1995
171052577102631546310 ~1996
1710527513421055039 ~1995
1710563393421126799 ~1995
Home
4.843.404 digits
e-mail
25-06-08