Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1875835793751671599 ~1996
1875935513751871039 ~1996
1876184993752369999 ~1996
1876237433752474879 ~1996
187624153450297967310 ~1998
187627553450306127310 ~1998
1876330793752661599 ~1996
1876453193752906399 ~1996
1876527713753055439 ~1996
1876537313753074639 ~1996
187657159187657159110 ~1997
1876582793753165599 ~1996
1876595393753190799 ~1996
1876602113753204239 ~1996
1876638233753276479 ~1996
1876642313753284639 ~1996
187665587450397408910 ~1998
1876666793753333599 ~1996
1876831433753662879 ~1996
187685087150148069710 ~1997
1876864913753729839 ~1996
1876872113753744239 ~1996
1876893713753787439 ~1996
187695197150156157710 ~1997
1876959233753918479 ~1996
Exponent Prime Factor Digits Year
187698571337857427910 ~1998
187699277112619566310 ~1997
1877057993754115999 ~1996
187712341112627404710 ~1997
187715519150172415310 ~1997
1877206913754413839 ~1996
1877219513754439039 ~1996
1877327633754655279 ~1996
1877356313754712639 ~1996
187735657112641394310 ~1997
1877373113754746239 ~1996
1877373233754746479 ~1996
1877374793754749599 ~1996
1877491433754982879 ~1996
1877507633755015279 ~1996
187750879337951582310 ~1998
187754689413060315910 ~1998
1877570513755141039 ~1996
1877578913755157839 ~1996
1877586113755172239 ~1996
1877655593755311199 ~1996
187769327150215461710 ~1997
1877702631389499946311 ~1999
1877772113755544239 ~1996
1877798871389571163911 ~1999
Exponent Prime Factor Digits Year
187784477112670686310 ~1997
187793267150234613710 ~1997
187798159187798159110 ~1997
187802353112681411910 ~1997
187804739150243791310 ~1997
1878054593756109199 ~1996
1878068633756137279 ~1996
1878096833756193679 ~1996
1878115793756231599 ~1996
1878126233756252479 ~1996
187814789150251831310 ~1997
1878155993756311999 ~1996
1878167033756334079 ~1996
1878285593756571199 ~1996
1878317993756635999 ~1996
187836661112701996710 ~1997
1878419633756839279 ~1996
1878427193756854399 ~1996
1878507113757014239 ~1996
187852409150281927310 ~1997
187853173112711903910 ~1997
1878535313757070639 ~1996
1878549833757099679 ~1996
1878553313757106639 ~1996
1878568913757137839 ~1996
Exponent Prime Factor Digits Year
1878574319054728174311 ~2001
1878601313757202639 ~1996
187866607300586571310 ~1998
187872271187872271110 ~1997
1878751193757502399 ~1996
1878786833757573679 ~1996
187883833112730299910 ~1997
1878844193757688399 ~1996
1878848393757696799 ~1996
187889129150311303310 ~1997
187891159187891159110 ~1997
1878922511089775055911 ~1999
187898167300637067310 ~1998
187910581751642324110 ~1999
187918109263085352710 ~1998
187918147300669035310 ~1998
1879192193758384399 ~1996
1879221593758443199 ~1996
187929607187929607110 ~1997
1879315193758630399 ~1996
187935773112761463910 ~1997
1879360193758720399 ~1996
1879412633758825279 ~1996
1879424513758849039 ~1996
1879449233758898479 ~1996
Home
4.739.325 digits
e-mail
25-04-20