Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
187945133112767079910 ~1997
1879471433758942879 ~1996
1879574633759149279 ~1996
1879578113759156239 ~1996
187959833112775899910 ~1997
1879608593759217199 ~1996
1879634033759268079 ~1996
1879641131015006210311 ~1999
187964599451115037710 ~1998
1879679993759359999 ~1996
1879736993759473999 ~1996
187978361112787016710 ~1997
187982189150385751310 ~1997
1879900793759801599 ~1996
1879911833759823679 ~1996
1879914113759828239 ~1996
1879948433759896879 ~1996
187999151338398471910 ~1998
188010737263215031910 ~1998
1880192033760384079 ~1996
1880251793760503599 ~1996
188027381112816428710 ~1997
1880280233760560479 ~1996
1880325833760651679 ~1996
1880330033760660079 ~1996
Exponent Prime Factor Digits Year
1880431433760862879 ~1996
1880495393760990799 ~1996
1880527793761055599 ~1996
1880582033761164079 ~1996
1880587193761174399 ~1996
1880606993761213999 ~1996
1880613713761227439 ~1996
1880621033761242079 ~1996
1880640833761281679 ~1996
188065289263291404710 ~1998
188071721150457376910 ~1997
1880734913761469839 ~1996
1880756033761512079 ~1996
1880784833761569679 ~1996
1880798633761597279 ~1996
1880874233761748479 ~1996
1880897633761795279 ~1996
1880905433761810879 ~1996
188097493112858495910 ~1997
1880996033761992079 ~1996
188111461112866876710 ~1997
1881136313762272639 ~1996
188121127902981409710 ~1999
1881302513762605039 ~1996
1881306713762613439 ~1996
Exponent Prime Factor Digits Year
1881333713762667439 ~1996
1881334433762668879 ~1996
188146741112888044710 ~1997
1881487433762974879 ~1996
1881571433763142879 ~1996
1881599633763199279 ~1996
1881619433763238879 ~1996
1881626513763253039 ~1996
188167937451603048910 ~1998
1881697433763394879 ~1996
1881796793763593599 ~1996
1881843713763687439 ~1996
188189213112913527910 ~1997
1881975713763951439 ~1996
188198711150558968910 ~1997
1881993833763987679 ~1996
1881996593763993199 ~1996
1882082033764164079 ~1996
1882085993764171999 ~1996
1882139393764278799 ~1996
1882158833764317679 ~1996
1882236113764472239 ~1996
1882269113764538239 ~1996
1882322513764645039 ~1996
188234681112940808710 ~1997
Exponent Prime Factor Digits Year
1882368593764737199 ~1996
1882377233764754479 ~1996
1882408913764817839 ~1996
1882435793764871599 ~1996
1882471613162552304911 ~2000
188249839451799613710 ~1998
188253557150602845710 ~1997
1882576313765152639 ~1996
1882604633765209279 ~1996
1882624913765249839 ~1996
188262869150610295310 ~1997
188271557112962934310 ~1997
1882805033765610079 ~1996
1882809233765618479 ~1996
1882836713765673439 ~1996
1882838393765676799 ~1996
1882863593765727199 ~1996
1882869713765739439 ~1996
188287061150629648910 ~1997
1882893833765787679 ~1996
188291231150632984910 ~1997
188291953414242296710 ~1998
1882962593765925199 ~1996
1883016233766032479 ~1996
1883018033766036079 ~1996
Home
4.739.325 digits
e-mail
25-04-20