Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1737619433475238879 ~1995
173762053104257231910 ~1997
1737624833475249679 ~1995
1737665393475330799 ~1995
173766829938340876710 ~1999
1737684113475368239 ~1995
1737707393475414799 ~1995
173772773556072873710 ~1998
173773331139018664910 ~1997
1737759113475518239 ~1995
1737810593475621199 ~1995
1737888593475777199 ~1995
173789519139031615310 ~1997
173790527312822948710 ~1998
1737906713475813439 ~1995
1737939233475878479 ~1995
1737941393475882799 ~1995
1738004633476009279 ~1995
1738004993476009999 ~1995
1738044833476089679 ~1995
1738078913476157839 ~1995
1738160633476321279 ~1995
1738239113476478239 ~1995
1738240433476480879 ~1995
173826971139061576910 ~1997
Exponent Prime Factor Digits Year
1738318313476636639 ~1995
1738337393476674799 ~1995
1738387793476775599 ~1995
173846417660616384710 ~1998
1738483193476966399 ~1995
1738519331112652371311 ~1999
1738538633477077279 ~1995
1738544033477088079 ~1995
1738604513477209039 ~1995
173861801139089440910 ~1997
1738646993477293999 ~1995
173881993104329195910 ~1997
173892353104335411910 ~1997
1738930631147694215911 ~1999
1738932833477865679 ~1995
1738945433477890879 ~1995
1738955033477910079 ~1995
1738961393477922799 ~1995
173897231139117784910 ~1997
173897953278236724910 ~1998
1739045471112989100911 ~1999
1739135393478270799 ~1995
173916007278265611310 ~1998
173920121104352072710 ~1997
173923219173923219110 ~1997
Exponent Prime Factor Digits Year
1739287193478574399 ~1995
1739324393478648799 ~1995
1739335313478670639 ~1995
1739391593478783199 ~1995
1739461913478923839 ~1995
1739478113478956239 ~1995
1739486393478972799 ~1995
1739501513479003039 ~1995
173956513104373907910 ~1997
173957681104374608710 ~1997
173958973104375383910 ~1997
1739671913479343839 ~1995
1739677193479354399 ~1995
173971271139177016910 ~1997
1739762513479525039 ~1995
1739819033479638079 ~1995
1739822993479645999 ~1995
173984513104390707910 ~1997
1739855513479711039 ~1995
1739868593479737199 ~1995
1739948513479897039 ~1995
173996701382792742310 ~1998
1740111713480223439 ~1995
1740135833480271679 ~1995
1740138113480276239 ~1995
Exponent Prime Factor Digits Year
1740161632505832747311 ~2000
1740205793480411599 ~1995
174021517278434427310 ~1998
1740215171218150619111
1740253913480507839 ~1995
1740261593480523199 ~1995
1740333233480666479 ~1995
1740340793480681599 ~1995
174038899417693357710 ~1998
174044789243662704710 ~1997
174049457139239565710 ~1997
174055681104433408710 ~1997
1740573713481147439 ~1995
1740587513481175039 ~1995
1740612713481225439 ~1995
174061421104436852710 ~1997
1740651233481302479 ~1995
174067409139253927310 ~1997
1740848993481697999 ~1995
1740873833481747679 ~1995
1740889193481778399 ~1995
174096343417831223310 ~1998
1741039913482079839 ~1995
1741064033482128079 ~1995
1741106033482212079 ~1995
Home
4.843.404 digits
e-mail
25-06-08