Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
174113273104467963910 ~1997
1741165313482330639 ~1995
174118229139294583310 ~1997
174121097104472658310 ~1997
174121217104472730310 ~1997
1741235633482471279 ~1995
174125453104475271910 ~1997
1741386833482773679 ~1995
1741410593482821199 ~1995
174141953557254249710 ~1998
174150299313470538310 ~1998
1741563713483127439 ~1995
1741581131114611923311 ~1999
1741639193483278399 ~1995
174166541104499924710 ~1997
1741696433483392879 ~1995
1741709993483419999 ~1995
1741710833483421679 ~1995
1741736633483473279 ~1995
1741868993483737999 ~1995
174187963418051111310 ~1998
1741882433483764879 ~1995
174190019557408060910 ~1998
1741939313483878639 ~1995
174196327278714123310 ~1998
Exponent Prime Factor Digits Year
1741965593483931199 ~1995
174198733104519239910 ~1997
174200231452920600710 ~1998
1742046713484093439 ~1995
1742066033484132079 ~1995
1742126393484252799 ~1995
1742165993484331999 ~1995
1742194313484388639 ~1995
1742270513484541039 ~1995
1742364233484728479 ~1995
1742378393484756799 ~1995
1742403593484807199 ~1995
1742424233484848479 ~1995
1742495993484991999 ~1995
1742527193485054399 ~1995
174254741139403792910 ~1997
1742604593485209199 ~1995
1742647913485295839 ~1995
174267707453096038310 ~1998
174269477139415581710 ~1997
1742704193485408399 ~1995
1742706833485413679 ~1995
174276629243987280710 ~1997
1742797793485595599 ~1995
1742961833485923679 ~1995
Exponent Prime Factor Digits Year
1742989193485978399 ~1995
1743041393486082799 ~1995
174307607139446085710 ~1997
1743088193486176399 ~1995
1743159833486319679 ~1995
1743202913486405839 ~1995
1743204833486409679 ~1995
1743234593486469199 ~1995
174328613976240232910 ~1999
1743288593486577199 ~1995
174329381104597628710 ~1997
1743298193486596399 ~1995
174330173104598103910 ~1997
1743302033486604079 ~1995
1743381233486762479 ~1995
174339457418414696910 ~1998
1743504113487008239 ~1995
1743524393487048799 ~1995
1743587033487174079 ~1995
1743609113487218239 ~1995
1743664631673918044911 ~1999
1743826793487653599 ~1995
1743861833487723679 ~1995
174387373104632423910 ~1997
1744053593488107199 ~1995
Exponent Prime Factor Digits Year
1744103393488206799 ~1995
174414701104648820710 ~1997
1744152113488304239 ~1995
174418921104651352710 ~1997
174421439139537151310 ~1997
1744272233488544479 ~1995
174438287139550629710 ~1997
174440687139552549710 ~1997
174443531313998355910 ~1998
174444553104666731910 ~1997
174446443174446443110 ~1997
174447887139558309710 ~1997
174450841104670504710 ~1997
174454337139563469710 ~1997
174458797104675278310 ~1997
1744588913489177839 ~1995
174459473104675683910 ~1997
1744694393489388799 ~1995
1744827233489654479 ~1995
174486677139589341710 ~1997
174495149418788357710 ~1998
1744979033489958079 ~1995
1744980593489961199 ~1995
174504017104702410310 ~1997
1745040233490080479 ~1995
Home
4.843.404 digits
e-mail
25-06-08