Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1914542393829084799 ~1996
1914559193829118399 ~1996
1914646313829292639 ~1996
1914652433829304879 ~1996
1914655913829311839 ~1996
1914701993829403999 ~1996
1914766193829532399 ~1996
1914870833829741679 ~1996
1914884993829769999 ~1996
1914889913829779839 ~1996
1914946793829893599 ~1996
191494697153195757710 ~1997
1914978113829956239 ~1996
1914982433829964879 ~1996
191501357114900814310 ~1997
191508839153207071310 ~1997
1915096913830193839 ~1996
1915130393830260799 ~1996
1915131233830262479 ~1996
191529337114917602310 ~1997
191530531191530531110 ~1997
1915309313830618639 ~1996
1915323713830647439 ~1996
191534807153227845710 ~1997
1915384433830768879 ~1996
Exponent Prime Factor Digits Year
1915436033830872079 ~1996
191545303459708727310 ~1998
1915493393830986799 ~1996
1915618793831237599 ~1996
1915641233831282479 ~1996
1915667033831334079 ~1996
191581043498110711910 ~1998
191585501114951300710 ~1997
1915893833831787679 ~1996
1915898033831796079 ~1996
1915904393831808799 ~1996
1915911713831823439 ~1996
191605949153284759310 ~1997
1916103113832206239 ~1996
1916123393832246799 ~1996
1916161433832322879 ~1996
191621701114973020710 ~1997
191625523651526778310 ~1999
1916256713832513439 ~1996
1916296433832592879 ~1996
1916299793832599599 ~1996
1916503913833007839 ~1996
1916517833833035679 ~1996
1916555393833110799 ~1996
1916809433833618879 ~1996
Exponent Prime Factor Digits Year
191682941115009764710 ~1997
1916877593833755199 ~1996
1916965793833931599 ~1996
1917035633834071279 ~1996
1917039713834079439 ~1996
1917064793834129599 ~1996
1917135593834271199 ~1996
191716597115029958310 ~1997
191719123766876492110 ~1999
1917236393834472799 ~1996
1917257393834514799 ~1996
1917266513834533039 ~1996
1917274433834548879 ~1996
1917347993834695999 ~1996
1917425033834850079 ~1996
191742841115045704710 ~1997
1917497513834995039 ~1996
1917584033835168079 ~1996
191761903460228567310 ~1998
1917704513835409039 ~1996
191782259153425807310 ~1997
1917913433835826879 ~1996
1917936713835873439 ~1996
1917992993835985999 ~1996
1918011113836022239 ~1996
Exponent Prime Factor Digits Year
1918015793836031599 ~1996
191803109460327461710 ~1998
1918067993836135999 ~1996
191812967345263340710 ~1998
1918214393836428799 ~1996
1918259993836519999 ~1996
1918261793836523599 ~1996
1918276313836552639 ~1996
1918307633836615279 ~1996
191840177268576247910 ~1998
1918411793836823599 ~1996
1918439993836879999 ~1996
1918530712340607466311 ~2000
1918553993837107999 ~1996
191858027153486421710 ~1997
191862719345352894310 ~1998
1918674713837349439 ~1996
191875169268625236710 ~1998
1918905713837811439 ~1996
1918907993837815999 ~1996
1919030393838060799 ~1996
1919040593838081199 ~1996
1919071193838142399 ~1996
191910001115146000710 ~1997
1919118713838237439 ~1996
Home
4.739.325 digits
e-mail
25-04-20