Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1752405113504810239 ~1995
175245221105147132710 ~1997
1752493913504987839 ~1995
1752591593505183199 ~1995
175281767420676240910 ~1998
1752824033505648079 ~1995
1752830513505661039 ~1995
1752842513505685039 ~1995
175289339140231471310 ~1997
1752933233505866479 ~1995
1752944393505888799 ~1995
1753015313506030639 ~1995
1753037633506075279 ~1995
1753068233506136479 ~1995
175307381140245904910 ~1997
175307501140246000910 ~1997
1753148513506297039 ~1995
175316333105189799910 ~1997
175339993105203995910 ~1997
175346489140277191310 ~1997
175348451455905972710 ~1998
175356023736495296710 ~1999
1753586993507173999 ~1995
1753626113507252239 ~1995
1753656233507312479 ~1995
Exponent Prime Factor Digits Year
1753742633507485279 ~1995
1753803233507606479 ~1995
1753822193507644399 ~1995
1753836833507673679 ~1995
175385761105231456710 ~1997
1753867211227707047111 ~1999
1753867793507735599 ~1995
175391081105234648710 ~1997
175392293105235375910 ~1997
175401833105241099910 ~1997
1754062433508124879 ~1995
175407797105244678310 ~1997
1754303993508607999 ~1995
1754359193508718399 ~1995
1754362793508725599 ~1995
1754386193508772399 ~1995
1754456033508912079 ~1995
1754465393508930799 ~1995
1754579633509159279 ~1995
1754600393509200799 ~1995
175461337105276802310 ~1997
1754626433509252879 ~1995
1754627513509255039 ~1995
1754668313509336639 ~1995
1754696033509392079 ~1995
Exponent Prime Factor Digits Year
1754699393509398799 ~1995
175473359140378687310 ~1997
1754762633509525279 ~1995
1754771633509543279 ~1995
1754814593509629199 ~1995
1754906633509813279 ~1995
1755010193510020399 ~1995
1755022313510044639 ~1995
175511233105306739910 ~1997
1755140993510281999 ~1995
1755177113510354239 ~1995
175524953105314971910 ~1997
1755270833510541679 ~1995
1755315713510631439 ~1995
175533731140426984910 ~1997
1755360713510721439 ~1995
1755379913510759839 ~1995
175541759140433407310 ~1997
175541921140433536910 ~1997
175542173105325303910 ~1997
1755475793510951599 ~1995
1755483113510966239 ~1995
1755503393511006799 ~1995
175551031175551031110 ~1997
175556107280889771310 ~1998
Exponent Prime Factor Digits Year
1755640793511281599 ~1995
1755646193511292399 ~1995
1755677393511354799 ~1995
175570903175570903110 ~1997
1755807113511614239 ~1995
175581941140465552910 ~1997
1755821393511642799 ~1995
1755854513511709039 ~1995
1755888113511776239 ~1995
175589681140471744910 ~1997
1755900713511801439 ~1995
1755934793511869599 ~1995
1755940313511880639 ~1995
175596569140477255310 ~1997
1756019033512038079 ~1995
175604453105362671910 ~1997
175606393421455343310 ~1998
1756161912107394292111 ~2000
175616887175616887110 ~1997
1756254233512508479 ~1995
175625761105375456710 ~1997
175628927140503141710 ~1997
1756308833512617679 ~1995
1756351913512703839 ~1995
1756368713512737439 ~1995
Home
4.843.404 digits
e-mail
25-06-08