Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1771513793543027599 ~1995
1771541633543083279 ~1995
1771562513543125039 ~1995
1771578113543156239 ~1995
1771582313543164639 ~1995
1771608713543217439 ~1995
1771680833543361679 ~1995
1771683113543366239 ~1995
1771711913543423839 ~1995
1771753193543506399 ~1995
1771764593543529199 ~1995
1771788713543577439 ~1995
1771800233543600479 ~1995
177188353106313011910 ~1997
1771906913543813839 ~1995
1771920833543841679 ~1995
177192259708769036110 ~1999
177193607425264656910 ~1998
1771944113543888239 ~1995
1771952513543905039 ~1995
177195497106317298310 ~1997
1771976513543953039 ~1995
177202981106321788710 ~1997
1772045633544091279 ~1995
1772065313544130639 ~1995
Exponent Prime Factor Digits Year
1772104793544209599 ~1995
1772137913544275839 ~1995
1772141513544283039 ~1995
1772153993544307999 ~1995
177228703177228703110 ~1997
1772310233544620479 ~1995
1772315033544630079 ~1995
1772323433544646879 ~1995
1772329433544658879 ~1995
1772350433544700879 ~1995
177236287177236287110 ~1997
177243043177243043110 ~1997
1772456393544912799 ~1995
1772495033544990079 ~1995
1772562833545125679 ~1995
1772622713545245439 ~1995
1772643713545287439 ~1995
1772676593545353199 ~1995
177270559425449341710 ~1998
177274169141819335310 ~1997
1772802233545604479 ~1995
1772906513545813039 ~1995
177291197106374718310 ~1997
1772915993545831999 ~1995
1772923313545846639 ~1995
Exponent Prime Factor Digits Year
1772969633545939279 ~1995
1773007193546014399 ~1995
1773042233546084479 ~1995
177304559425530941710 ~1998
177304817106382890310 ~1997
177306761106384056710 ~1997
1773094793546189599 ~1995
1773147233546294479 ~1995
1773157913546315839 ~1995
177318133106390879910 ~1997
1773213113546426239 ~1995
177324737106394842310 ~1997
1773324833546649679 ~1995
1773366113546732239 ~1995
1773415193546830399 ~1995
1773460793546921599 ~1995
1773462593546925199 ~1995
1773485993546971999 ~1995
1773492233546984479 ~1995
177359033106415419910 ~1997
177361553106416931910 ~1997
177364543603039446310 ~1998
177365473106419283910 ~1997
177365933106419559910 ~1997
177368281106420968710 ~1997
Exponent Prime Factor Digits Year
1773703793547407599 ~1995
177373993106424395910 ~1997
1773745793547491599 ~1995
1773766793547533599 ~1995
1773848033547696079 ~1995
1773871793547743599 ~1995
177387887141910309710 ~1997
1773899393547798799 ~1995
1773928433547856879 ~1995
1773928793547857599 ~1995
177393857106436314310 ~1997
1773975233547950479 ~1995
1774002713548005439 ~1995
177400451141920360910 ~1997
1774013033548026079 ~1995
1774048793548097599 ~1995
1774057793548115599 ~1995
177412229141929783310 ~1997
1774201793548403599 ~1995
1774208633548417279 ~1995
177429431141943544910 ~1997
1774311833548623679 ~1995
1774315433548630879 ~1995
1774332713548665439 ~1995
177441997106465198310 ~1997
Home
4.843.404 digits
e-mail
25-06-08