Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
193222193115933315910 ~1997
193227869270519016710 ~1998
193233961115940376710 ~1997
193242121579726363110 ~1999
193246721154597376910 ~1997
193247773115948663910 ~1997
193249739154599791310 ~1997
193251319657054484710 ~1999
1932520433865040879 ~1996
1932523433865046879 ~1996
1932536393865072799 ~1996
193253789154603031310 ~1997
1932550913865101839 ~1996
1932554513865109039 ~1996
1932584633865169279 ~1996
1932620393865240799 ~1996
1932633731352843611111 ~1999
193264901115958940710 ~1997
1932748313865496639 ~1996
193277081115966248710 ~1997
1932774593865549199 ~1996
193282829154626263310 ~1997
1932877193865754399 ~1996
1932917817577037815311 ~2001
1932982913865965839 ~1996
Exponent Prime Factor Digits Year
1932986633865973279 ~1996
1933008233866016479 ~1996
193300871154640696910 ~1997
193305737154644589710 ~1997
193309019618588860910 ~1999
1933097991430492512711 ~2000
1933120734755476995911 ~2001
1933126433866252879 ~1996
1933140833866281679 ~1996
193315459193315459110 ~1997
1933224713866449439 ~1996
1933225793866451599 ~1996
1933290113866580239 ~1996
193333171193333171110 ~1997
1933338233866676479 ~1996
193337437116002462310 ~1997
1933388633866777279 ~1996
1933425593866851199 ~1996
1933439633866879279 ~1996
193347251928066804910 ~1999
1933493633866987279 ~1996
1933530713867061439 ~1996
193356227154684981710 ~1997
1933612793867225599 ~1996
1933670393867340799 ~1996
Exponent Prime Factor Digits Year
193373563464096551310 ~1998
1933850633867701279 ~1996
1933926233867852479 ~1996
193394197116036518310 ~1997
1933977833867955679 ~1996
1933994711585875662311 ~2000
1934071433868142879 ~1996
193407509580222527110 ~1999
193409197309454715310 ~1998
193411693116047015910 ~1997
193415111154732088910 ~1997
1934219513868439039 ~1996
1934234033868468079 ~1996
193423697116054218310 ~1997
193426903193426903110 ~1997
1934297513868595039 ~1996
1934306513868613039 ~1996
1934337593868675199 ~1996
193437709464250501710 ~1998
1934386913868773839 ~1996
1934420033868840079 ~1996
1934507393869014799 ~1996
1934597513869195039 ~1996
1934634233869268479 ~1996
1934651993869303999 ~1996
Exponent Prime Factor Digits Year
1934854433869708879 ~1996
193486697464368072910 ~1998
1934887313869774639 ~1996
193491107154792885710 ~1997
1934923913869847839 ~1996
1934955593869911199 ~1996
1934998793869997599 ~1996
193505383193505383110 ~1997
193507469154805975310 ~1997
1935081233870162479 ~1996
1935125513870251039 ~1996
193516567193516567110 ~1997
1935217913870435839 ~1996
193523611348342499910 ~1998
1935255233870510479 ~1996
1935277313870554639 ~1996
19352803319623742546312 ~2002
1935281033870562079 ~1996
193528481116117088710 ~1997
1935374513870749039 ~1996
1935380633870761279 ~1996
193546589154837271310 ~1997
1935486713870973439 ~1996
1935551633871103279 ~1996
1935552833871105679 ~1996
Home
4.843.404 digits
e-mail
25-06-08