Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
225298867225298867110 ~1998
225304889180243911310 ~1998
225305441180244352910 ~1998
2253092514506185039 ~1996
225314339180251471310 ~1998
225316739405570130310 ~1999
225320897135192538310 ~1997
2253245634506491279 ~1996
225333377135200026310 ~1997
2253336114506672239 ~1996
2253357114506714239 ~1996
2253370434506740879 ~1996
225343291225343291110 ~1998
2253456234506912479 ~1996
2253494514506989039 ~1996
2253530994507061999 ~1996
2253569034507138079 ~1996
225358073135214843910 ~1997
2253770514507541039 ~1996
2253813234507626479 ~1996
2253818394507636799 ~1996
2253848994507697999 ~1996
225384953135230971910 ~1997
2253884514507769039 ~1996
225388837135233302310 ~1997
Exponent Prime Factor Digits Year
225398531586036180710 ~1999
2254005834508011679 ~1996
225402053135241231910 ~1997
2254041714508083439 ~1996
2254096434508192879 ~1996
2254097034508194079 ~1996
2254135794508271599 ~1996
2254250994508501999 ~1996
2254269834508539679 ~1996
225428941135257364710 ~1997
2254320714508641439 ~1996
2254349034508698079 ~1996
2254362234508724479 ~1996
2254362834508725679 ~1996
2254372914508745839 ~1996
2254379034508758079 ~1996
2254429914508859839 ~1996
2254432794508865599 ~1996
225448681135269208710 ~1997
225449977135269986310 ~1997
225453923946906476710 ~1999
225454049180363239310 ~1998
225457061135274236710 ~1997
2254604394509208799 ~1996
2254623834509247679 ~1996
Exponent Prime Factor Digits Year
2254650411082232196911 ~2000
2254669914509339839 ~1996
2254677714509355439 ~1996
2254677834509355679 ~1996
225475589180380471310 ~1998
225479203360766724910 ~1998
2254891914509783839 ~1996
2254998714509997439 ~1996
2255037834510075679 ~1996
225523877180419101710 ~1998
2255280594510561199 ~1996
225531749180425399310 ~1998
2255364114510728239 ~1996
225538637135323182310 ~1997
225559177135335506310 ~1997
2255601714511203439 ~1996
225563759180451007310 ~1998
2255685234511370479 ~1996
2255714034511428079 ~1996
2255722794511445599 ~1996
2255854434511708879 ~1996
2255886594511773199 ~1996
2255900634511801279 ~1996
2255927994511855999 ~1996
225597397135358438310 ~1997
Exponent Prime Factor Digits Year
2256214194512428399 ~1996
2256243594512487199 ~1996
225647501135388500710 ~1997
225650077135390046310 ~1997
225650393315910550310 ~1998
2256683514513367039 ~1996
2256698034513396079 ~1996
225683071225683071110 ~1998
225688871586791064710 ~1999
225698021180558416910 ~1998
2256988314513976639 ~1996
2256996112708395332111 ~2001
2257010394514020799 ~1996
2257090194514180399 ~1996
225709571180567656910 ~1998
225709573135425743910 ~1997
2257149714514299439 ~1996
225718793135431275910 ~1997
2257230834514461679 ~1996
225729617180583693710 ~1998
2257297194514594399 ~1996
2257305592212159478311 ~2000
2257373994514747999 ~1996
2257569594515139199 ~1996
2257806834515613679 ~1996
Home
4.843.404 digits
e-mail
25-06-08