Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2522669515045339039 ~1997
252266957151360174310 ~1998
252275341151365204710 ~1998
252277541151366524710 ~1998
2522858515045717039 ~1997
2522952595045905199 ~1997
2522953271665149158311 ~2000
2523015835046031679 ~1997
252305441151383264710 ~1998
2523119035046238079 ~1997
2523151315046302639 ~1997
2523205315046410639 ~1997
2523216595046433199 ~1997
2523224395046448799 ~1997
2523231115046462239 ~1997
2523244195046488399 ~1997
2523318115046636239 ~1997
252334897151400938310 ~1998
252335053605604127310 ~1999
252338759201871007310 ~1998
2523455395046910799 ~1997
2523467515046935039 ~1997
2523490435046980879 ~1997
252350597353290835910 ~1999
2523619435047238879 ~1997
Exponent Prime Factor Digits Year
252363403252363403110 ~1998
2523658311059936490311 ~2000
2523671515047343039 ~1997
2523728635047457279 ~1997
2523734035047468079 ~1997
252385867252385867110 ~1998
2523867235047734479 ~1997
2523883795047767599 ~1997
2523884635047769279 ~1997
252400331201920264910 ~1998
2524075795048151599 ~1997
2524110115048220239 ~1997
2524147315048294639 ~1997
252418037605803288910 ~1999
2524336315048672639 ~1997
2524340515048681039 ~1997
2524395715048791439 ~1997
2524489191262244595111 ~2000
2524580995049161999 ~1997
2524582315049164639 ~1997
2524591315049182639 ~1997
252459887201967909710 ~1998
2524711195049422399 ~1997
2524713715049427439 ~1997
2524782835049565679 ~1997
Exponent Prime Factor Digits Year
2524800715049601439 ~1997
252483137201986509710 ~1998
252486977605968744910 ~1999
2524893715049787439 ~1997
2524916995049833999 ~1997
2524940035049880079 ~1997
2524953715049907439 ~1997
2525065315050130639 ~1997
2525232595050465199 ~1997
2525279035050558079 ~1997
2525282995050565999 ~1997
252530477151518286310 ~1998
2525348395050696799 ~1997
2525401315050802639 ~1997
2525409235050818479 ~1997
2525456035050912079 ~1997
2525506195051012399 ~1997
252561511252561511110 ~1998
2525667115051334239 ~1997
2525683315051366639 ~1997
252574547202059637710 ~1998
2525748595051497199 ~1997
2525782795051565599 ~1997
2525797795051595599 ~1997
2525797915051595839 ~1997
Exponent Prime Factor Digits Year
252581141202064912910 ~1998
2525830315051660639 ~1997
2525841595051683199 ~1997
2526042235052084479 ~1997
252604789555730535910 ~1999
252610903606266167310 ~1999
252614137151568482310 ~1998
252616817353663543910 ~1999
2526202435052404879 ~1997
252628679202102943310 ~1998
252635557404216891310 ~1999
252636091404217745710 ~1999
2526382195052764399 ~1997
252665117353731163910 ~1999
2526660835053321679 ~1997
252683987202147189710 ~1998
252691919202153535310 ~1998
252692263252692263110 ~1998
2526945235053890479 ~1997
2526977515053955039 ~1997
252701441151620864710 ~1998
2527019035054038079 ~1997
252706757151624054310 ~1998
252717041151630224710 ~1998
2527217395054434799 ~1997
Home
4.739.325 digits
e-mail
25-04-20