Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
399939473239963683910 ~1999
399946201239967720710 ~1999
399948301239968980710 ~1999
399955877239973526310 ~1999
3999622197999244399 ~1998
3999769317999538639 ~1998
399978331719960995910 ~2001
399981817959956360910 ~2001
399983999719971198310 ~2001
399991421239994852710 ~1999
4000027198000054399 ~1998
4000074238000148479 ~1998
4000142998000285999 ~1998
400017713240010627910 ~1999
4000307518000615039 ~1998
4000309318000618639 ~1998
4000323838000647679 ~1998
4000411072000205535111 ~2002
400043227720077808710 ~2001
4000692838001385679 ~1998
4000760518001521039 ~1998
4000783198001566399 ~1998
400088917240053350310 ~1999
4001006398002012799 ~1998
4001041798002083599 ~1998
Exponent Prime Factor Digits Year
4001050918002101839 ~1998
4001147518002295039 ~1998
4001169118002338239 ~1998
400126697240076018310 ~1999
400139237560194931910 ~2000
4001445718002891439 ~1998
4001498638002997279 ~1998
400151357240090814310 ~1999
400159423400159423110 ~2000
400163033240097819910 ~1999
4001767438003534879 ~1998
4001898718003797439 ~1998
4001971131280630761711 ~2001
4001995318003990639 ~1998
4002023998004047999 ~1998
4002039718004079439 ~1998
400215047320172037710 ~2000
4002160733201728584111 ~2002
400223567720402420710 ~2001
4002298918004597839 ~1998
4002420718004841439 ~1998
4002429118004858239 ~1998
4002431998004863999 ~1998
40025570313448591620912 ~2004
4002608518005217039 ~1998
Exponent Prime Factor Digits Year
4002678118005356239 ~1998
4002719998005439999 ~1998
4002744118005488239 ~1998
4002836998005673999 ~1998
4002875998005751999 ~1998
4002976198005952399 ~1998
4003045438006090879 ~1998
4003166998006333999 ~1998
400319033240191419910 ~1999
4003298518006597039 ~1998
4003406638006813279 ~1998
4003440238006880479 ~1998
4003481638006963279 ~1998
400349777240209866310 ~1999
4003534198007068399 ~1998
400377391720679303910 ~2001
4003887118007774239 ~1998
4003916398007832799 ~1998
4003947838007895679 ~1998
4003948611521500471911 ~2001
400396933240238159910 ~1999
4004325238008650479 ~1998
4004328718008657439 ~1998
4004468998008937999 ~1998
4004523598009047199 ~1998
Exponent Prime Factor Digits Year
400460713240276427910 ~1999
4004729518009459039 ~1998
4004731913203785528111 ~2002
4004824198009648399 ~1998
4005106798010213599 ~1998
4005149038010298079 ~1998
4005236038010472079 ~1998
4005313318010626639 ~1998
4005525118011050239 ~1998
400559011400559011110 ~2000
400561729961348149710 ~2001
4005711838011423679 ~1998
400572701240343620710 ~1999
400588621240353172710 ~1999
4005908638011817279 ~1998
4005971998011943999 ~1998
4006183438012366879 ~1998
400624417240374650310 ~1999
400640501320512400910 ~2000
400645529320516423310 ~2000
4006526998013053999 ~1998
4006551598013103199 ~1998
4006680838013361679 ~1998
400677337240406402310 ~1999
400679897320543917710 ~2000
Home
4.843.404 digits
e-mail
25-06-08