Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4006837918013675839 ~1998
4006851118013702239 ~1998
4006913638013827279 ~1998
4006914718013829439 ~1998
4006916638013833279 ~1998
400691849320553479310 ~2000
4006985638013971279 ~1998
4007127598014255199 ~1998
4007151794568153040711 ~2002
4007217718014435439 ~1998
4007239198014478399 ~1998
4007378038014756079 ~1998
4007492038014984079 ~1998
4007649718015299439 ~1998
4007775718015551439 ~1998
4007889598015779199 ~1998
4007914318015828639 ~1998
400811819320649455310 ~2000
40084696918198452392712 ~2004
4008469918016939839 ~1998
400852817320682253710 ~2000
4008765712645785368711 ~2002
400884269561237976710 ~2000
4009047718018095439 ~1998
400905691400905691110 ~2000
Exponent Prime Factor Digits Year
4009092473207273976111 ~2002
4009100638018201279 ~1998
4009167131844216879911 ~2002
400933081240559848710 ~1999
400937309962249541710 ~2001
400949377240569626310 ~1999
4009642798019285599 ~1998
400966073240579643910 ~1999
4009693798019387599 ~1998
400976053240585631910 ~1999
400993781240596268710 ~1999
4009959118019918239 ~1998
400996573240597943910 ~1999
4010032318020064639 ~1998
401011469320809175310 ~2000
401023097561432335910 ~2000
401032693240619615910 ~1999
401038663401038663110 ~2000
4010517238021034479 ~1998
4010563198021126399 ~1998
4010568238021136479 ~1998
4010772238021544479 ~1998
4010830438021660879 ~1998
4010885038021770079 ~1998
4010898838021797679 ~1998
Exponent Prime Factor Digits Year
401094013240656407910 ~1999
4011008638022017279 ~1998
4011100438022200879 ~1998
401122913240673747910 ~1999
4011405838022811679 ~1998
4011578038023156079 ~1998
4011852598023705199 ~1998
401195827722152488710 ~2001
4012117198024234399 ~1998
401219053240731431910 ~1999
4012359712648157408711 ~2002
4012381798024763599 ~1998
401253977561755567910 ~2000
40127511152968314652112 ~2005
4012756318025512639 ~1998
401276873240766123910 ~1999
4013114998026229999 ~1998
4013331238026662479 ~1998
4013383318026766639 ~1998
401342857240805714310 ~1999
401358557321086845710 ~2000
4013677318027354639 ~1998
4013732398027464799 ~1998
401383847321107077710 ~2000
4013887318027774639 ~1998
Exponent Prime Factor Digits Year
401393801240836280710 ~1999
4013948398027896799 ~1998
4013969518027939039 ~1998
4014035391926736987311 ~2002
401408621321126896910 ~2000
4014267231685992236711 ~2001
401441473240864883910 ~1999
4014430198028860399 ~1998
401460701240876420710 ~1999
4014666718029333439 ~1998
4014678838029357679 ~1998
4014698398029396799 ~1998
401471773240883063910 ~1999
401486881240892128710 ~1999
4014921831686267168711 ~2001
4014942118029884239 ~1998
401509817240905890310 ~1999
4015114798030229599 ~1998
401512157240907294310 ~1999
401517121240910272710 ~1999
4015252918030505839 ~1998
4015260118030520239 ~1998
4015320118030640239 ~1998
4015462318030924639 ~1998
4015493038030986079 ~1998
Home
4.843.404 digits
e-mail
25-06-08