Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4068710398137420799 ~1998
406900183651040292910 ~2000
406902019976564845710 ~2001
4069085811302107459311 ~2001
4069101838138203679 ~1998
4069265638138531279 ~1998
4069274038138548079 ~1998
406940819325552655310 ~2000
4069496398138992799 ~1998
4069530594232311813711 ~2002
4069701838139403679 ~1998
4069837198139674399 ~1998
406988273244192963910 ~1999
406994993976787983310 ~2001
4070026918140053839 ~1998
407007121244204272710 ~1999
4070165038140330079 ~1998
4070207398140414799 ~1998
4070399398140798799 ~1998
4070538411221161523111 ~2001
4070563798141127599 ~1998
407073691407073691110 ~2000
407103343977048023310 ~2001
407110019977064045710 ~2001
4071151798142303599 ~1998
Exponent Prime Factor Digits Year
4071247198142494399 ~1998
4071352798142705599 ~1998
4071364798142729599 ~1998
4071678118143356239 ~1998
4071773398143546799 ~1998
4071946318143892639 ~1998
4072049398144098799 ~1998
4072318438144636879 ~1998
4072729918145459839 ~1998
407292581244375548710 ~1999
407312621244387572710 ~1999
4073128318146256639 ~1998
4073144038146288079 ~1998
4073342998146685999 ~1998
4073357638146715279 ~1998
407337569325870055310 ~2000
4073435398146870799 ~1998
4073447398146894799 ~1998
4073559838147119679 ~1998
4073651638147303279 ~1998
4073900518147801039 ~1998
4074477598148955199 ~1998
4074770998149541999 ~1998
4074833398149666799 ~1998
4074957238149914479 ~1998
Exponent Prime Factor Digits Year
407496029325996823310 ~2000
4074987718149975439 ~1998
4074990838149981679 ~1998
4075123318150246639 ~1998
4075130038150260079 ~1998
407513759733524766310 ~2001
4075222438150444879 ~1998
407523629326018903310 ~2000
407524829326019863310 ~2000
407551073244530643910 ~1999
407559799407559799110 ~2000
407570161652112257710 ~2000
407598151733676671910 ~2001
4075983718151967439 ~1998
407603501326082800910 ~2000
407611079326088863310 ~2000
407630761244578456710 ~1999
407642707407642707110 ~2000
4076514118153028239 ~1998
4076554918153109839 ~1998
407655509326124407310 ~2000
407670301244602180710 ~1999
4076720038153440079 ~1998
407685101244611060710 ~1999
4077060118154120239 ~1998
Exponent Prime Factor Digits Year
4077097798154195599 ~1998
4077141718154283439 ~1998
4077261838154523679 ~1998
4077281038154562079 ~1998
4077283198154566399 ~1998
4077403798154807599 ~1998
4077550918155101839 ~1998
4077607798155215599 ~1998
407766001244659600710 ~1999
4077704398155408799 ~1998
407773699407773699110 ~2000
407781313244668787910 ~1999
407796029570914440710 ~2000
407804599407804599110 ~2000
407810201326248160910 ~2000
4078426918156853839 ~1998
4078533598157067199 ~1998
407854411407854411110 ~2000
4078741798157483599 ~1998
407874329326299463310 ~2000
4078851718157703439 ~1998
407888807326311045710 ~2000
407898019734216434310 ~2001
4079002198158004399 ~1998
407901401244740840710 ~1999
Home
4.843.404 digits
e-mail
25-06-08