Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
518509559103701911910 ~1999
518540471103708094310 ~1999
518541071103708214310 ~1999
5185516991244524077711 ~2002
518552843103710568710 ~1999
518561051103712210310 ~1999
518576039103715207910 ~1999
518601383103720276710 ~1999
518629451103725890310 ~1999
518631959103726391910 ~1999
518634947414907957710 ~2001
518644991103728998310 ~1999
518650823103730164710 ~1999
518668751103733750310 ~1999
518671799103734359910 ~1999
518687573311212543910 ~2000
518691731103738346310 ~1999
518725637414980509710 ~2001
518729819103745963910 ~1999
518747123103749424710 ~1999
518749559103749911910 ~1999
518749919103749983910 ~1999
518760793830017268910 ~2001
518769743103753948710 ~1999
518771681415017344910 ~2001
Exponent Prime Factor Digits Year
518773823103754764710 ~1999
518781383103756276710 ~1999
518796623103759324710 ~1999
518796959103759391910 ~1999
518816579103763315910 ~1999
518821559103764311910 ~1999
518830943103766188710 ~1999
518831561311298936710 ~2000
518831941311299164710 ~2000
518847971103769594310 ~1999
518886671103777334310 ~1999
518887717311332630310 ~2000
518899163103779832710 ~1999
518905237311343142310 ~2000
518907503103781500710 ~1999
518908877311345326310 ~2000
518916263103783252710 ~1999
518929511103785902310 ~1999
518935451103787090310 ~1999
518936903103787380710 ~1999
518954483103790896710 ~1999
518956447934121604710 ~2001
519021383103804276710 ~1999
519030679519030679110 ~2001
519030971103806194310 ~1999
Exponent Prime Factor Digits Year
519058703103811740710 ~1999
519075121311445072710 ~2000
519078281415262624910 ~2001
519103751103820750310 ~1999
519112343103822468710 ~1999
519121873311473123910 ~2000
519124717311474830310 ~2000
519139277311483566310 ~2000
519145019103829003910 ~1999
519147337311488402310 ~2000
519151859103830371910 ~1999
519174119103834823910 ~1999
519180803103836160710 ~1999
519235037311541022310 ~2000
519254063103850812710 ~1999
519254423103850884710 ~1999
519275219103855043910 ~1999
519294731103858946310 ~1999
519299471103859894310 ~1999
519357983103871596710 ~1999
519400241311640144710 ~2000
519408419415526735310 ~2001
519425891103885178310 ~1999
519446003103889200710 ~1999
519453971103890794310 ~1999
Exponent Prime Factor Digits Year
519460301415568240910 ~2001
519493703103898740710 ~1999
519511103103902220710 ~1999
5195149871766350955911 ~2002
519518459103903691910 ~1999
51951894111221609125712 ~2004
5195189532078075812111 ~2002
519527399103905479910 ~1999
519546971103909394310 ~1999
519547139103909427910 ~1999
519556883103911376710 ~1999
519577139103915427910 ~1999
519585551103917110310 ~1999
519593663103918732710 ~1999
519596663103919332710 ~1999
519623099103924619910 ~1999
519635411103927082310 ~1999
519654901311792940710 ~2000
519662113311797267910 ~2000
519668483103933696710 ~1999
519680773311808463910 ~2000
519698843103939768710 ~1999
519704611519704611110 ~2001
519735731103947146310 ~1999
519777337311866402310 ~2000
Home
4.724.182 digits
e-mail
25-04-13