Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
505466711101093342310 ~1999
505477391101095478310 ~1999
505487771101097554310 ~1999
505496951101099390310 ~1999
505515203101103040710 ~1999
505519957303311974310 ~2000
505545563101109112710 ~1999
505551671101110334310 ~1999
505553771101110754310 ~1999
505554503101110900710 ~1999
505563101404450480910 ~2000
505565831404452664910 ~2000
505567511101113502310 ~1999
5055794098493734071311 ~2004
505583737808933979310 ~2001
50558598131447448018312 ~2005
505595227505595227110 ~2001
505617503101123500710 ~1999
505633519505633519110 ~2001
505644959101128991910 ~1999
505646423101129284710 ~1999
505653563101130712710 ~1999
505678163101135632710 ~1999
5056972331213673359311 ~2002
505698161303418896710 ~2000
Exponent Prime Factor Digits Year
505714343101142868710 ~1999
505717829404574263310 ~2000
505736579101147315910 ~1999
505742663101148532710 ~1999
505743779101148755910 ~1999
505766879101153375910 ~1999
505786331101157266310 ~1999
505788047404630437710 ~2000
505798571101159714310 ~1999
505802653303481591910 ~2000
505812479910462462310 ~2001
5058310093945481870311 ~2003
505831451101166290310 ~1999
505863971101172794310 ~1999
505876571101175314310 ~1999
505880051101176010310 ~1999
505902557303541534310 ~2000
505908401404726720910 ~2000
505916219101183243910 ~1999
505937423101187484710 ~1999
505985351101197070310 ~1999
505998079505998079110 ~2001
506007611101201522310 ~1999
506019167404815333710 ~2000
506019323101203864710 ~1999
Exponent Prime Factor Digits Year
506030141404824112910 ~2000
506050283101210056710 ~1999
506051999101210399910 ~1999
506060339101212067910 ~1999
506063219101212643910 ~1999
506080439101216087910 ~1999
506084473303650683910 ~2000
506127239101225447910 ~1999
506158883101231776710 ~1999
506172311101234462310 ~1999
506179991101235998310 ~1999
506259203101251840710 ~1999
506303351101260670310 ~1999
50632724324303707664112 ~2005
506327891101265578310 ~1999
506345363101269072710 ~1999
506366039101273207910 ~1999
5063701131215288271311 ~2002
506370743101274148710 ~1999
506374657303824794310 ~2000
506380151101276030310 ~1999
506397659101279531910 ~1999
506403203101280640710 ~1999
506417761303850656710 ~2000
506425103101285020710 ~1999
Exponent Prime Factor Digits Year
506432831101286566310 ~1999
506444723101288944710 ~1999
506456243101291248710 ~1999
506483699101296739910 ~1999
506483951101296790310 ~1999
506486471101297294310 ~1999
506497577303898546310 ~2000
506527531810444049710 ~2001
506552441405241952910 ~2000
506559661303935796710 ~2000
506571193303942715910 ~2000
506589781303953868710 ~2000
506590277405272221710 ~2000
506616251101323250310 ~1999
506625023101325004710 ~1999
506626663810602660910 ~2001
506630543101326108710 ~1999
506675201405340160910 ~2000
5066987213648230791311 ~2003
506732351101346470310 ~1999
506737397304042438310 ~2000
506755727405404581710 ~2000
506759441304055664710 ~2000
506777651101355530310 ~1999
506785463101357092710 ~1999
Home
4.724.182 digits
e-mail
25-04-13