Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
506789197304073518310 ~2000
506800163101360032710 ~1999
506800439101360087910 ~1999
506802503101360500710 ~1999
506805119101361023910 ~1999
506833763101366752710 ~1999
506846771101369354310 ~1999
506858123101371624710 ~1999
5068659492432956555311 ~2002
50686768711049715576712 ~2004
506869691101373938310 ~1999
506871191101374238310 ~1999
506914799101382959910 ~1999
506921939101384387910 ~1999
506922007506922007110 ~2001
506928563101385712710 ~1999
506935991101387198310 ~1999
5069427672433325281711 ~2002
506964791101392958310 ~1999
506967971101393594310 ~1999
507000743101400148710 ~1999
507047291101409458310 ~1999
507057179101411435910 ~1999
507068351101413670310 ~1999
507079151101415830310 ~1999
Exponent Prime Factor Digits Year
5070833631318416743911 ~2002
507101183101420236710 ~1999
507110783101422156710 ~1999
507114197405691357710 ~2000
507123101304273860710 ~2000
507143831101428766310 ~1999
507163463101432692710 ~1999
507170291101434058310 ~1999
507171239101434247910 ~1999
507171443101434288710 ~1999
507179171101435834310 ~1999
507181679101436335910 ~1999
507186847507186847110 ~2001
507196463101439292710 ~1999
507214979101442995910 ~1999
507221471101444294310 ~1999
507249551101449910310 ~1999
5072687931217445103311 ~2002
507290099101458019910 ~1999
507313361304388016710 ~2000
507316553304389931910 ~2000
507317159101463431910 ~1999
507320641811713025710 ~2001
507331633811730612910 ~2001
507351263101470252710 ~1999
Exponent Prime Factor Digits Year
507396959101479391910 ~1999
507401423101480284710 ~1999
507413999101482799910 ~1999
507427751101485550310 ~1999
507432613304459567910 ~2000
507447131101489426310 ~1999
507455579101491115910 ~1999
507462491405969992910 ~2000
507469003811950404910 ~2001
507470699101494139910 ~1999
507491639101498327910 ~1999
507493799101498759910 ~1999
507522863101504572710 ~1999
507527771101505554310 ~1999
5075372574872357667311 ~2003
507538403101507680710 ~1999
507561479101512295910 ~1999
507562343101512468710 ~1999
507566483101513296710 ~1999
507568417304541050310 ~2000
507575459101515091910 ~1999
507580163101516032710 ~1999
507584459101516891910 ~1999
507626351101525270310 ~1999
507630017304578010310 ~2000
Exponent Prime Factor Digits Year
507641081304584648710 ~2000
507653879101530775910 ~1999
507659699101531939910 ~1999
507660317304596190310 ~2000
507661391101532278310 ~1999
507672703812276324910 ~2001
507688931101537786310 ~1999
507715199101543039910 ~1999
507729791406183832910 ~2000
507745727913942308710 ~2001
507752123101550424710 ~1999
507754007406203205710 ~2000
507770621406216496910 ~2000
507799079101559815910 ~1999
5078034974874913571311 ~2003
507808043101561608710 ~1999
507814211101562842310 ~1999
507828361304697016710 ~2000
507857579101571515910 ~1999
507877631101575526310 ~1999
507890951101578190310 ~1999
507894743101578948710 ~1999
50790385711377046396912 ~2004
507946151101589230310 ~1999
507947711101589542310 ~1999
Home
4.724.182 digits
e-mail
25-04-13