Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
507950299507950299110 ~2001
507953003101590600710 ~1999
507978847507978847110 ~2001
507979583101595916710 ~1999
507980243101596048710 ~1999
507981503101596300710 ~1999
507984839101596967910 ~1999
508008097304804858310 ~2000
508013333304807999910 ~2000
508018799101603759910 ~1999
508047493304828495910 ~2000
50804967121947745787312 2005
508088303101617660710 ~1999
508098443101619688710 ~1999
508113899101622779910 ~1999
508115107508115107110 ~2001
508117619101623523910 ~1999
508138583101627716710 ~1999
508141919101628383910 ~1999
508145483101629096710 ~1999
508154173304892503910 ~2000
508159871101631974310 ~1999
50818248736284229571912 2005
508184063101636812710 ~1999
508196099101639219910 ~1999
Exponent Prime Factor Digits Year
508264703101652940710 ~1999
508272119101654423910 ~1999
508313423101662684710 ~1999
508317311101663462310 ~1999
508321223101664244710 ~1999
508336343101667268710 ~1999
508337717305002630310 ~2000
508352219101670443910 ~1999
5083598531220063647311 ~2002
508360597305016358310 ~2000
508369223101673844710 ~1999
5083692431220086183311 ~2002
508387991101677598310 ~1999
508399571101679914310 ~1999
508402211101680442310 ~1999
508406039101681207910 ~1999
508406219101681243910 ~1999
508406341305043804710 ~2000
508410251101682050310 ~1999
50841095313727095731112 ~2004
508412699101682539910 ~1999
508426733305056039910 ~2000
508428983101685796710 ~1999
508453301305071980710 ~2000
508511579101702315910 ~1999
Exponent Prime Factor Digits Year
508550519101710103910 ~1999
508557443101711488710 ~1999
508563661305138196710 ~2000
508568843101713768710 ~1999
508586657406869325710 ~2000
508587263101717452710 ~1999
508590587406872469710 ~2000
508600139101720027910 ~1999
508601501305160900710 ~2000
508605551101721110310 ~1999
508611011101722202310 ~1999
508640843101728168710 ~1999
508643693305186215910 ~2000
508656557305193934310 ~2000
508658879101731775910 ~1999
508669883101733976710 ~1999
508687559101737511910 ~1999
508700399101740079910 ~1999
508736699101747339910 ~1999
508751879101750375910 ~1999
508771031101754206310 ~1999
508777891508777891110 ~2001
508790591101758118310 ~1999
508802681407042144910 ~2000
508805723101761144710 ~1999
Exponent Prime Factor Digits Year
508807763101761552710 ~1999
5088085696105702828111 ~2003
5088213772747635435911 ~2002
508830853305298511910 ~2000
508847263814155620910 ~2001
508849613305309767910 ~2000
508852919101770583910 ~1999
508853641305312184710 ~2000
508853903101770780710 ~1999
508879571101775914310 ~1999
508887959101777591910 ~1999
508929539101785907910 ~1999
508972463101794492710 ~1999
508983019508983019110 ~2001
509020703101804140710 ~1999
509022623101804524710 ~1999
509036903101807380710 ~1999
509041139101808227910 ~1999
509044799101808959910 ~1999
509051897407241517710 ~2000
509060459101812091910 ~1999
509072171101814434310 ~1999
509074151101814830310 ~1999
5091036111323669388711 ~2002
509159879101831975910 ~1999
Home
4.724.182 digits
e-mail
25-04-13