Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
507575459101515091910 ~1999
507580163101516032710 ~1999
507584459101516891910 ~1999
507626351101525270310 ~1999
507630017304578010310 ~2000
507641081304584648710 ~2000
507653879101530775910 ~1999
507659699101531939910 ~1999
507660317304596190310 ~2000
507661391101532278310 ~1999
507672703812276324910 ~2001
507688931101537786310 ~1999
507715199101543039910 ~1999
507729791406183832910 ~2000
507745727913942308710 ~2001
507752123101550424710 ~1999
507754007406203205710 ~2000
507770621406216496910 ~2000
507799079101559815910 ~1999
5078034974874913571311 ~2003
507808043101561608710 ~1999
507814211101562842310 ~1999
507828361304697016710 ~2000
507857579101571515910 ~1999
507877631101575526310 ~1999
Exponent Prime Factor Digits Year
507890951101578190310 ~1999
507894743101578948710 ~1999
50790385711377046396912 ~2004
507946151101589230310 ~1999
507947711101589542310 ~1999
507950299507950299110 ~2001
507953003101590600710 ~1999
507978847507978847110 ~2001
507979583101595916710 ~1999
507980243101596048710 ~1999
507981503101596300710 ~1999
507984839101596967910 ~1999
508008097304804858310 ~2000
508013333304807999910 ~2000
508018799101603759910 ~1999
508047493304828495910 ~2000
50804967121947745787312 2005
508088303101617660710 ~1999
508098443101619688710 ~1999
508113899101622779910 ~1999
508115107508115107110 ~2001
508117619101623523910 ~1999
508138583101627716710 ~1999
508141919101628383910 ~1999
508145483101629096710 ~1999
Exponent Prime Factor Digits Year
508154173304892503910 ~2000
508159871101631974310 ~1999
50818248736284229571912 2005
508184063101636812710 ~1999
508196099101639219910 ~1999
508264703101652940710 ~1999
508272119101654423910 ~1999
508313423101662684710 ~1999
508317311101663462310 ~1999
508321223101664244710 ~1999
508336343101667268710 ~1999
508337717305002630310 ~2000
508352219101670443910 ~1999
5083598531220063647311 ~2002
508360597305016358310 ~2000
508369223101673844710 ~1999
5083692431220086183311 ~2002
508387991101677598310 ~1999
508399571101679914310 ~1999
508402211101680442310 ~1999
508406039101681207910 ~1999
508406219101681243910 ~1999
508406341305043804710 ~2000
508410251101682050310 ~1999
50841095313727095731112 ~2004
Exponent Prime Factor Digits Year
508412699101682539910 ~1999
508426733305056039910 ~2000
508428983101685796710 ~1999
508453301305071980710 ~2000
508511579101702315910 ~1999
508550519101710103910 ~1999
508557443101711488710 ~1999
508563661305138196710 ~2000
508568843101713768710 ~1999
508586657406869325710 ~2000
508587263101717452710 ~1999
508590587406872469710 ~2000
508600139101720027910 ~1999
508601501305160900710 ~2000
508605551101721110310 ~1999
508611011101722202310 ~1999
508640843101728168710 ~1999
508643693305186215910 ~2000
508656557305193934310 ~2000
508658879101731775910 ~1999
508669883101733976710 ~1999
508687559101737511910 ~1999
508700399101740079910 ~1999
508736699101747339910 ~1999
508751879101750375910 ~1999
Home
4.739.325 digits
e-mail
25-04-20