Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
517335989413868791310 ~2001
517382531103476506310 ~1999
517383599103476719910 ~1999
517387991103477598310 ~1999
517395917310437550310 ~2000
517409987413927989710 ~2001
517414537310448722310 ~2000
517417597310450558310 ~2000
517442699103488539910 ~1999
517475531103495106310 ~1999
517484719517484719110 ~2001
517499639103499927910 ~1999
517500803103500160710 ~1999
517505699103501139910 ~1999
517507649414006119310 ~2001
517528283103505656710 ~1999
517538783103507756710 ~1999
517545239103509047910 ~1999
517550963103510192710 ~1999
517555931103511186310 ~1999
517558889414047111310 ~2001
517562741310537644710 ~2000
517570373310542223910 ~2000
517625567414100453710 ~2001
5176495492484717835311 ~2002
Exponent Prime Factor Digits Year
517660541310596324710 ~2000
517691159103538231910 ~1999
5177001912174340802311 ~2002
517718819103543763910 ~1999
517738799414191039310 ~2001
517782263103556452710 ~1999
517803479103560695910 ~1999
517810451103562090310 ~1999
517823699103564739910 ~1999
517824491103564898310 ~1999
517875623103575124710 ~1999
517877183103575436710 ~1999
517878671103575734310 ~1999
517881431103576286310 ~1999
517888127414310501710 ~2001
517904111414323288910 ~2001
517905383103581076710 ~1999
517919183103583836710 ~1999
517925279103585055910 ~1999
517946657310767994310 ~2000
517948199103589639910 ~1999
517970941310782564710 ~2000
517971119103594223910 ~1999
517988971517988971110 ~2001
518005703103601140710 ~1999
Exponent Prime Factor Digits Year
518009171103601834310 ~1999
518009417414407533710 ~2001
518021237310812742310 ~2000
5180244071243258576911 ~2002
5180344313419027244711 ~2003
518045069414436055310 ~2001
518045999103609199910 ~1999
518069291103613858310 ~1999
518075951414460760910 ~2001
518080019103616003910 ~1999
518081497310848898310 ~2000
518089163103617832710 ~1999
518093531103618706310 ~1999
518113103103622620710 ~1999
518150189414520151310 ~2001
518158913310895347910 ~2000
518159639103631927910 ~1999
518189543103637908710 ~1999
518195201310917120710 ~2000
518200399518200399110 ~2001
518217263103643452710 ~1999
518219231103643846310 ~1999
518220959414576767310 ~2001
518230901310938540710 ~2000
518247083103649416710 ~1999
Exponent Prime Factor Digits Year
518251763103650352710 ~1999
518274719103654943910 ~1999
518289791414631832910 ~2001
518298659103659731910 ~1999
518306819103661363910 ~1999
518329211103665842310 ~1999
518329979103665995910 ~1999
518344979103668995910 ~1999
518348483103669696710 ~1999
518357641311014584710 ~2000
518359031103671806310 ~1999
5183661411658771651311 ~2002
518371913311023147910 ~2000
518378963103675792710 ~1999
518380259103676051910 ~1999
518386751103677350310 ~1999
518396591103679318310 ~1999
518421857311053114310 ~2000
518428643103685728710 ~1999
518453723103690744710 ~1999
518455787414764629710 ~2001
518458211103691642310 ~1999
518464477311078686310 ~2000
518467931103693586310 ~1999
518477831414782264910 ~2001
Home
4.724.182 digits
e-mail
25-04-13