Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
524140607943453092710 ~2001
524140943104828188710 ~1999
524150773314490463910 ~2000
524155739104831147910 ~1999
524174663104834932710 ~1999
524191511104838302310 ~1999
524194681314516808710 ~2000
524195939104839187910 ~1999
524217119104843423910 ~1999
524225111104845022310 ~1999
524228951104845790310 ~1999
524254079104850815910 ~1999
524254319104850863910 ~1999
524289383104857876710 ~1999
524289599104857919910 ~1999
524304923104860984710 ~1999
524305871104861174310 ~1999
524311211104862242310 ~1999
524354921314612952710 ~2000
524364517314618710310 ~2000
524381917314629150310 ~2000
524386451104877290310 ~1999
524388911104877782310 ~1999
524400599104880119910 ~1999
524402891104880578310 ~1999
Exponent Prime Factor Digits Year
524414711104882942310 ~1999
524417279419533823310 ~2001
524420639104884127910 ~1999
524428211104885642310 ~1999
524445721314667432710 ~2000
524460143104892028710 ~1999
524469061314681436710 ~2000
5244862016713423372911 ~2004
5244889271783262351911 ~2002
524490311104898062310 ~1999
524493419104898683910 ~1999
524502263104900452710 ~1999
524507603104901520710 ~1999
524545643104909128710 ~1999
524555711104911142310 ~1999
524557751419646200910 ~2001
524558623524558623110 ~2001
524570897734399255910 ~2001
524586983104917396710 ~1999
524591993314755195910 ~2000
524592773314755663910 ~2000
524596139104919227910 ~1999
5246093873462421954311 ~2003
524613311104922662310 ~1999
524619899104923979910 ~1999
Exponent Prime Factor Digits Year
524663123104932624710 ~1999
524666003104933200710 ~1999
524682299104936459910 ~1999
524682551944428591910 ~2001
524686091104937218310 ~1999
524723291104944658310 ~1999
524726123104945224710 ~1999
524748131104949626310 ~1999
524768591104953718310 ~1999
524788259104957651910 ~1999
524807771104961554310 ~1999
524821139419856911310 ~2001
524863637314918182310 ~2000
524892911104978582310 ~1999
524905631104981126310 ~1999
524913971104982794310 ~1999
524919181314951508710 ~2000
524972531104994506310 ~1999
524994383104998876710 ~1999
525015983105003196710 ~1999
525017033735023846310 ~2001
525025103105005020710 ~1999
525047483105009496710 ~1999
525050699105010139910 ~1999
525054203105010840710 ~1999
Exponent Prime Factor Digits Year
525072371105014474310 ~1999
525072491105014498310 ~1999
525084173735117842310 ~2001
525091331105018266310 ~1999
525092437315055462310 ~2000
5251074133675751891111 ~2003
525113951105022790310 ~1999
525125681420100544910 ~2001
525156491105031298310 ~1999
525158657420126925710 ~2001
525159539105031907910 ~1999
525171791105034358310 ~1999
525187763105037552710 ~1999
525197171105039434310 ~1999
525199331105039866310 ~1999
525206663105041332710 ~1999
525210239105042047910 ~1999
525212651105042530310 ~1999
525216179105043235910 ~1999
525224363105044872710 ~1999
525244847420195877710 ~2001
5253091071365803678311 ~2002
525318611105063722310 ~1999
525359591105071918310 ~1999
525360371105072074310 ~1999
Home
4.724.182 digits
e-mail
25-04-13