Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4015594798031189599 ~1998
4015780318031560639 ~1998
401592677240955606310 ~1999
4015936318031872639 ~1998
4015960438031920879 ~1998
4015984198031968399 ~1998
4016093638032187279 ~1998
4016173798032347599 ~1998
4016236271365520331911 ~2001
4016309518032619039 ~1998
4016343238032686479 ~1998
401636021321308816910 ~2000
4016367238032734479 ~1998
4016459998032919999 ~1998
4016480998032961999 ~1998
4016546638033093279 ~1998
401654951321323960910 ~2000
4016769118033538239 ~1998
401685029562359040710 ~2000
4016871838033743679 ~1998
4016902798033805599 ~1998
4016994238033988479 ~1998
4017001198034002399 ~1998
401725897241035538310 ~1999
4017323398034646799 ~1998
Exponent Prime Factor Digits Year
4017473038034946079 ~1998
4017679918035359839 ~1998
401768537321414829710 ~2000
4017721318035442639 ~1998
4017729718035459439 ~1998
4017844798035689599 ~1998
4017978118035956239 ~1998
4018054798036109599 ~1998
4018102438036204879 ~1998
4018151038036302079 ~1998
401821681241093008710 ~1999
4018260838036521679 ~1998
401870537241122322310 ~1999
401870879321496703310 ~2000
401871989321497591310 ~2000
4018736638037473279 ~1998
4018739038037478079 ~1998
4018764598037529199 ~1998
401880121241128072710 ~1999
401889317321511453710 ~2000
4019105638038211279 ~1998
4019108518038217039 ~1998
401924441321539552910 ~2000
401939693964655263310 ~2001
4019515318039030639 ~1998
Exponent Prime Factor Digits Year
4019536918039073839 ~1998
401956847964696432910 ~2001
4019655238039310479 ~1998
4019796898923949095911 ~2003
4019949598039899199 ~1998
4019967118039934239 ~1998
4020072238040144479 ~1998
402013853241208311910 ~1999
4020301438040602879 ~1998
4020511198041022399 ~1998
402053761643286017710 ~2000
4020754198041508399 ~1998
4020865198041730399 ~1998
4020872398041744799 ~1998
402101879321681503310 ~2000
402103271321682616910 ~2000
4021092718042185439 ~1998
4021162198042324399 ~1998
4021208638042417279 ~1998
4021253518042507039 ~1998
402136157241281694310 ~1999
402138641241283184710 ~1999
4021470598042941199 ~1998
4021559518043119039 ~1998
402163549884759807910 ~2001
Exponent Prime Factor Digits Year
4021734838043469679 ~1998
4022086438044172879 ~1998
402210937241326562310 ~1999
4022368198044736399 ~1998
4022409118044818239 ~1998
402242447321793957710 ~2000
4022464198044928399 ~1998
4022497918044995839 ~1998
402253301241351980710 ~1999
4022533438045066879 ~1998
4022651638045303279 ~1998
4022681038045362079 ~1998
402276377241365826310 ~1999
4022836438045672879 ~1998
4022907838045815679 ~1998
402291727402291727110 ~2000
402299411321839528910 ~2000
4023010198046020399 ~1998
402301187321840949710 ~2000
4023159718046319439 ~1998
4023217438046434879 ~1998
4023319918046639839 ~1998
4023335398046670799 ~1998
402364673241418803910 ~1999
402391303402391303110 ~2000
Home
4.843.404 digits
e-mail
25-06-08