Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
531380461318828276710 ~2000
531383999106276799910 ~1999
5314054672657027335111 ~2003
531419279106283855910 ~1999
5314290771275429784911 ~2002
531441359106288271910 ~1999
531443219106288643910 ~1999
531458771106291754310 ~1999
531477539106295507910 ~1999
531484273318890563910 ~2000
531504047425203237710 ~2001
531516787850426859310 ~2001
531531683106306336710 ~1999
5315810213295802330311 ~2003
531581399106316279910 ~1999
531586049425268839310 ~2001
531587033318952219910 ~2000
531589697425271757710 ~2001
5316011232232724716711 ~2002
5316187971275885112911 ~2002
531630269425304215310 ~2001
531646919106329383910 ~1999
531652703106330540710 ~1999
531652921318991752710 ~2000
531674051106334810310 ~1999
Exponent Prime Factor Digits Year
531674789744344704710 ~2001
531687311106337462310 ~1999
531709019106341803910 ~1999
531721103106344220710 ~1999
531744307957139752710 ~2001
5317656231276237495311 ~2002
531767759106353551910 ~1999
531775331425420264910 ~2001
531785069744499096710 ~2001
531789001850862401710 ~2001
531791231106358246310 ~1999
531792983106358596710 ~1999
531805343106361068710 ~1999
531820199106364039910 ~1999
531822419106364483910 ~1999
531828299106365659910 ~1999
531837263106367452710 ~1999
531843131106368626310 ~1999
531848279106369655910 ~1999
531887879106377575910 ~1999
531895933319137559910 ~2000
531896303106379260710 ~1999
531914237425531389710 ~2001
531927983106385596710 ~1999
531934919106386983910 ~1999
Exponent Prime Factor Digits Year
531937883106387576710 ~1999
531950351106390070310 ~1999
531950651106390130310 ~1999
531983051106396610310 ~1999
531983519106396703910 ~1999
531986183106397236710 ~1999
531988559106397711910 ~1999
532000013319200007910 ~2000
532001047957601884710 ~2001
532001999106400399910 ~1999
532011563106402312710 ~1999
532037873319222723910 ~2000
532042631106408526310 ~1999
532058507425646805710 ~2001
532060871106412174310 ~1999
532064063106412812710 ~1999
532078319425662655310 ~2001
532089191957760543910 ~2001
532097711106419542310 ~1999
532103471106420694310 ~1999
532109471106421894310 ~1999
532117931106423586310 ~1999
532121459106424291910 ~1999
532126499106425299910 ~1999
5321290611702812995311 ~2002
Exponent Prime Factor Digits Year
532147439106429487910 ~1999
532151003106430200710 ~1999
532152083106430416710 ~1999
532155443106431088710 ~1999
5321657571277197816911 ~2002
5321689434789520487111 ~2003
532201931106440386310 ~1999
532236851106447370310 ~1999
532245359106449071910 ~1999
532248779106449755910 ~1999
532264283106452856710 ~1999
532265663106453132710 ~1999
532270099958086178310 ~2001
532282823106456564710 ~1999
532301183106460236710 ~1999
532339403106467880710 ~1999
532341839106468367910 ~1999
532343723106468744710 ~1999
532356131106471226310 ~1999
532373999425899199310 ~2001
532390673319434403910 ~2000
532412093319447255910 ~2000
532418423106483684710 ~1999
532423163106484632710 ~1999
532426381851882209710 ~2001
Home
4.724.182 digits
e-mail
25-04-13