Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
533551153320130691910 ~2000
533553983106710796710 ~1999
533581943106716388710 ~1999
533592877320155726310 ~2000
533611031106722206310 ~1999
533612363106722472710 ~1999
533631023106726204710 ~1999
533648443533648443110 ~2001
533652719106730543910 ~1999
533664587426931669710 ~2001
533697119106739423910 ~1999
533727011106745402310 ~1999
533729783106745956710 ~1999
533737871106747574310 ~1999
533741233320244739910 ~2000
533755499106751099910 ~1999
533770151106754030310 ~1999
533788019106757603910 ~1999
533790479106758095910 ~1999
533792249427033799310 ~2001
533812931106762586310 ~1999
533823539106764707910 ~1999
533835719106767143910 ~1999
533839739106767947910 ~1999
533845181427076144910 ~2001
Exponent Prime Factor Digits Year
533849417747389183910 ~2001
533868239106773647910 ~1999
533882009747434812710 ~2001
533892617320335570310 ~2000
533899813854239700910 ~2001
533920741320352444710 ~2000
533920979106784195910 ~1999
533937119106787423910 ~1999
533944451106788890310 ~1999
533948339106789667910 ~1999
533985953320391571910 ~2000
533987171106797434310 ~1999
533989139106797827910 ~1999
534043619106808723910 ~1999
534066671106813334310 ~1999
534082841320449704710 ~2000
534087343534087343110 ~2001
534088343106817668710 ~1999
534093503106818700710 ~1999
534094751106818950310 ~1999
534117979534117979110 ~2001
534128519427302815310 ~2001
534143843106828768710 ~1999
534151991106830398310 ~1999
534174913320504947910 ~2000
Exponent Prime Factor Digits Year
5341827431282038583311 ~2002
534224279106844855910 ~1999
534250217320550130310 ~2000
534259717320555830310 ~2000
534266683534266683110 ~2001
534276319534276319110 ~2001
534281459106856291910 ~1999
534286283106857256710 ~1999
534293003106858600710 ~1999
534310919106862183910 ~1999
534330059106866011910 ~1999
534331163106866232710 ~1999
534332971534332971110 ~2001
534344243106868848710 ~1999
534357443106871488710 ~1999
534415019106883003910 ~1999
534463439106892687910 ~1999
534498203106899640710 ~1999
534540203106908040710 ~1999
534553991106910798310 ~1999
534562859106912571910 ~1999
5345830572138332228111 ~2002
534584051106916810310 ~1999
534587639106917527910 ~1999
534600191106920038310 ~1999
Exponent Prime Factor Digits Year
534627083106925416710 ~1999
5346561733742593211111 ~2003
534656357748518899910 ~2001
534661031106932206310 ~1999
534676379106935275910 ~1999
534677459106935491910 ~1999
534678311106935662310 ~1999
534692519106938503910 ~1999
534722351106944470310 ~1999
534723901320834340710 ~2000
534745153320847091910 ~2000
534752651106950530310 ~1999
5347767832246062488711 ~2002
534800891106960178310 ~1999
534823631106964726310 ~1999
534829331106965866310 ~1999
534851279106970255910 ~1999
534861493320916895910 ~2000
534866411106973282310 ~1999
534866471106973294310 ~1999
5348682412032499315911 ~2002
534880733320928439910 ~2000
534890903106978180710 ~1999
534939373320963623910 ~2000
534946081320967648710 ~2000
Home
4.724.182 digits
e-mail
25-04-13