Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
594219383118843876710 ~2000
594268151118853630310 ~2000
594287051118857410310 ~2000
594296519118859303910 ~2000
594303239118860647910 ~2000
594319001475455200910 ~2001
5943303291426392789711 ~2002
594336863118867372710 ~2000
594338099475470479310 ~2001
594349799118869959910 ~2000
594352237356611342310 ~2001
594371171118874234310 ~2000
594402899118880579910 ~2000
594407197356644318310 ~2001
594412823118882564710 ~2000
594418091118883618310 ~2000
5944272311069969015911 ~2002
5944449191426667805711 ~2002
594454163118890832710 ~2000
594513599118902719910 ~2000
594519143118903828710 ~2000
594535493356721295910 ~2001
594564941475651952910 ~2001
594572171118914434310 ~2000
594593243118918648710 ~2000
Exponent Prime Factor Digits Year
594627541356776524710 ~2001
594633563118926712710 ~2000
594639203118927840710 ~2000
5946632711070393887911 ~2002
594664991118932998310 ~2000
594684323118936864710 ~2000
594691871118938374310 ~2000
594717131118943426310 ~2000
5947258992854684315311 ~2003
5947276876779895631911 ~2004
594732731118946546310 ~2000
594738311118947662310 ~2000
594750659118950131910 ~2000
594751991118950398310 ~2000
594756131118951226310 ~2000
594759449475807559310 ~2001
594762821356857692710 ~2001
594776411118955282310 ~2000
5947833831546436795911 ~2002
594784067475827253710 ~2001
594818291118963658310 ~2000
594863663118972732710 ~2000
594866141475892912910 ~2001
594869591118973918310 ~2000
594879143118975828710 ~2000
Exponent Prime Factor Digits Year
5948800212379520084111 ~2003
594888851118977770310 ~2000
594892267594892267110 ~2001
594897707475918165710 ~2001
594901871118980374310 ~2000
594929039118985807910 ~2000
594937103118987420710 ~2000
594937391118987478310 ~2000
594939659118987931910 ~2000
594955139118991027910 ~2000
59495671110114264087112 ~2004
594962783118992556710 ~2000
594964703118992940710 ~2000
594979223118995844710 ~2000
595008671119001734310 ~2000
595037939119007587910 ~2000
595051679119010335910 ~2000
595053937357032362310 ~2001
595104131119020826310 ~2000
595118879119023775910 ~2000
595118939476095151310 ~2001
595126799119025359910 ~2000
595139977357083986310 ~2001
595141181357084708710 ~2001
595143551119028710310 ~2000
Exponent Prime Factor Digits Year
595144271119028854310 ~2000
595149083119029816710 ~2000
595156283119031256710 ~2000
595157951476126360910 ~2001
5951688433928114363911 ~2003
595191791119038358310 ~2000
595193887595193887110 ~2001
595199873833279822310 ~2002
59521253314285100792112 ~2005
595245263119049052710 ~2000
5952703095595540904711 ~2004
595292651119058530310 ~2000
595331003119066200710 ~2000
595333283119066656710 ~2000
595339051595339051110 ~2001
595394531119078906310 ~2000
595422013357253207910 ~2001
595428107476342485710 ~2001
595428437476342749710 ~2001
595431359119086271910 ~2000
595447493833626490310 ~2002
595459861357275916710 ~2001
595460483119092096710 ~2000
595483457357290074310 ~2001
595517677357310606310 ~2001
Home
4.724.182 digits
e-mail
25-04-13