Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
512423039102484607910 ~1999
512429663102485932710 ~1999
512445743102489148710 ~1999
512452859102490571910 ~1999
512462903102492580710 ~1999
512475143102495028710 ~1999
512478313307486987910 ~2000
512493743102498748710 ~1999
512497343102499468710 ~1999
512512823102502564710 ~1999
512513377307508026310 ~2000
512517359102503471910 ~1999
512524861307514916710 ~2000
512554943102510988710 ~1999
512572793307543675910 ~2000
512577881410062304910 ~2000
512585459102517091910 ~1999
512622083102524416710 ~1999
512626253307575751910 ~2000
512664863102532972710 ~1999
512665403102533080710 ~1999
512698993307619395910 ~2000
512699123102539824710 ~1999
512705441307623264710 ~2000
512708957410167165710 ~2000
Exponent Prime Factor Digits Year
512715023102543004710 ~1999
512719019102543803910 ~1999
512721383102544276710 ~1999
5127221091948344014311 ~2002
512743691102548738310 ~1999
512763539102552707910 ~1999
512764859102552971910 ~1999
512770259102554051910 ~1999
512782637307669582310 ~2000
512788043102557608710 ~1999
512811983102562396710 ~1999
512818391410254712910 ~2000
512842763102568552710 ~1999
512852831102570566310 ~1999
5128537512153985754311 ~2002
512857451102571490310 ~1999
512893763102578752710 ~1999
512941063512941063110 ~2001
512965283102593056710 ~1999
512983193718176470310 ~2001
513002543102600508710 ~1999
513036323102607264710 ~1999
513057179102611435910 ~1999
513091559410473247310 ~2000
513094073307856443910 ~2000
Exponent Prime Factor Digits Year
513096757307858054310 ~2000
513109559102621911910 ~1999
513109871102621974310 ~1999
513111373307866823910 ~2000
513129341307877604710 ~2000
513143303102628660710 ~1999
513172433307903459910 ~2000
513175511410540408910 ~2000
513187901410550320910 ~2000
5131888913387046680711 ~2003
513201959102640391910 ~1999
513212963102642592710 ~1999
513220139102644027910 ~1999
513253271102650654310 ~1999
513264443102652888710 ~1999
513264623102652924710 ~1999
513278273307966963910 ~2000
513315563102663112710 ~1999
5133456733696088845711 ~2003
513372323102674464710 ~1999
513373079102674615910 ~1999
513374077308024446310 ~2000
513374111102674822310 ~1999
513375959102675191910 ~1999
513396761410717408910 ~2000
Exponent Prime Factor Digits Year
513423983102684796710 ~1999
513424799102684959910 ~1999
513425909410740727310 ~2000
5134312271232234944911 ~2002
513439463102687892710 ~1999
513442931102688586310 ~1999
513447793308068675910 ~2000
513452531102690506310 ~1999
513457597308074558310 ~2000
513461423102692284710 ~1999
513465143102693028710 ~1999
513471443102694288710 ~1999
513496331102699266310 ~1999
513512641308107584710 ~2000
513521681410817344910 ~2000
513534083102706816710 ~1999
513566519102713303910 ~1999
5135704672465138241711 ~2002
513572153308143291910 ~2000
513572933719002106310 ~2001
513607463102721492710 ~1999
513613663513613663110 ~2001
513615359102723071910 ~1999
513643633308186179910 ~2000
513644513308186707910 ~2000
Home
4.843.404 digits
e-mail
25-06-08