Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
536258453321755071910 ~2000
536261171107252234310 ~1999
536262731107252546310 ~1999
536291531107258306310 ~1999
536297243107259448710 ~1999
536304539107260907910 ~1999
536332259107266451910 ~1999
536335379107267075910 ~1999
536361911107272382310 ~1999
536367479429093983310 ~2001
536369903107273980710 ~1999
536378291107275658310 ~1999
536380451107276090310 ~1999
536385659107277131910 ~1999
536392201858227521710 ~2001
536402063107280412710 ~1999
536408381429126704910 ~2001
536447003107289400710 ~1999
536452997429162397710 ~2001
536457923107291584710 ~1999
536477339107295467910 ~1999
536480051107296010310 ~1999
536483891107296778310 ~1999
536512577321907546310 ~2000
5365314973433801580911 ~2003
Exponent Prime Factor Digits Year
536545183536545183110 ~2001
536552543107310508710 ~1999
536569811107313962310 ~1999
536573237751202531910 ~2001
536577659107315531910 ~1999
536586371107317274310 ~1999
536589491107317898310 ~1999
536643623107328724710 ~1999
536646563107329312710 ~1999
536659421429327536910 ~2001
536669543107333908710 ~1999
536700959107340191910 ~1999
536701163107340232710 ~1999
5367070213756949147111 ~2003
536714819107342963910 ~1999
536729579107345915910 ~1999
536731571107346314310 ~1999
536733383107346676710 ~1999
536737163107347432710 ~1999
5367388031288173127311 ~2002
536739191107347838310 ~1999
536761271107352254310 ~1999
536777651107355530310 ~1999
536795159107359031910 ~1999
536797883107359576710 ~1999
Exponent Prime Factor Digits Year
536804363107360872710 ~1999
536816821322090092710 ~2000
536824331107364866310 ~1999
536829983107365996710 ~1999
536836271107367254310 ~1999
536859797322115878310 ~2000
536861939107372387910 ~1999
536863073322117843910 ~2000
536866439107373287910 ~1999
5368710011181116202311 ~2002
536876999107375399910 ~1999
536881561322128936710 ~2000
536912633322147579910 ~2000
536918353322151011910 ~2000
536923883107384776710 ~1999
536925887429540709710 ~2001
536930759107386151910 ~1999
536956279536956279110 ~2001
536963099107392619910 ~1999
536976743107395348710 ~1999
536984761322190856710 ~2000
536987039107397407910 ~1999
536994863107398972710 ~1999
536997239107399447910 ~1999
537003253322201951910 ~2000
Exponent Prime Factor Digits Year
537007391107401478310 ~1999
537021061322212636710 ~2000
537021341322212804710 ~2000
537022259107404451910 ~1999
537023411107404682310 ~1999
537037271429629816910 ~2001
537043499107408699910 ~1999
537057991537057991110 ~2001
537060731107412146310 ~1999
537063053322237831910 ~2000
537088031107417606310 ~1999
537089753751925654310 ~2001
537115511107423102310 ~1999
537116231107423246310 ~1999
537164123107432824710 ~1999
537165007537165007110 ~2001
537167903107433580710 ~1999
537176351107435270310 ~1999
537177007537177007110 ~2001
537187457322312474310 ~2000
5371970995586849829711 ~2003
537209423107441884710 ~1999
5372102933008377640911 ~2003
537212891107442578310 ~1999
537241571107448314310 ~1999
Home
4.724.182 digits
e-mail
25-04-13