Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
546306899109261379910 ~1999
5463074698303873528911 ~2004
546310703109262140710 ~1999
546312803109262560710 ~1999
546338173327802903910 ~2000
546346441327807864710 ~2000
546356801327814080710 ~2000
546362759109272551910 ~1999
546389461327833676710 ~2000
546428243109285648710 ~1999
546443399109288679910 ~1999
546447743109289548710 ~1999
5464478291202185223911 ~2002
546453959109290791910 ~1999
546482039109296407910 ~1999
546492623109298524710 ~1999
546494831109298966310 ~1999
546499931109299986310 ~1999
546541871109308374310 ~1999
546542861327925716710 ~2000
546542879109308575910 ~1999
546552491109310498310 ~1999
546565319109313063910 ~1999
546583319109316663910 ~1999
546592523109318504710 ~1999
Exponent Prime Factor Digits Year
546611777437289421710 ~2001
546618599109323719910 ~1999
546641351109328270310 ~1999
546650183109330036710 ~1999
546654191109330838310 ~1999
546704159109340831910 ~1999
546705989765388384710 ~2001
546711577328026946310 ~2000
546733619109346723910 ~1999
546738443109347688710 ~1999
546739163109347832710 ~1999
546753811874806097710 ~2001
546760157765464219910 ~2001
546771419109354283910 ~1999
546772619109354523910 ~1999
546799387546799387110 ~2001
546799817328079890310 ~2000
546806951109361390310 ~1999
546834181328100508710 ~2000
546843971109368794310 ~1999
546897119109379423910 ~1999
546900973328140583910 ~2000
546902171437521736910 ~2001
546917411109383482310 ~1999
546920639109384127910 ~1999
Exponent Prime Factor Digits Year
546937871109387574310 ~1999
546940139109388027910 ~1999
546946223109389244710 ~1999
546976019109395203910 ~1999
546998897328199338310 ~2000
547012463109402492710 ~1999
547110359109422071910 ~1999
547133351109426670310 ~1999
547149611109429922310 ~1999
547162079109432415910 ~1999
547174679109434935910 ~1999
547206743109441348710 ~1999
547214399109442879910 ~1999
547219853328331911910 ~2000
547226819109445363910 ~1999
547229723109445944710 ~1999
547281547875650475310 ~2001
547352159109470431910 ~1999
547354877328412926310 ~2000
547384421328430652710 ~2000
547396823109479364710 ~1999
547404359109480871910 ~1999
547454003109490800710 ~1999
547482191109496438310 ~1999
547509731109501946310 ~1999
Exponent Prime Factor Digits Year
547512377328507426310 ~2000
547523831109504766310 ~1999
547553537328532122310 ~2000
547557971109511594310 ~1999
547582513328549507910 ~2000
547588523109517704710 ~1999
547609417328565650310 ~2000
547614299109522859910 ~1999
547662443109532488710 ~1999
547697879438158303310 ~2001
547718999109543799910 ~1999
547732343109546468710 ~1999
5477374991314569997711 ~2002
547741471547741471110 ~2001
547752809438202247310 ~2001
547774651985994371910 ~2002
547791551109558310310 ~1999
547793891109558778310 ~1999
547809371438247496910 ~2001
547828439109565687910 ~1999
547831157328698694310 ~2000
547831283109566256710 ~1999
547855811109571162310 ~1999
547860251109572050310 ~1999
547865459109573091910 ~1999
Home
4.724.182 digits
e-mail
25-04-13