Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
523727111104745422310 ~1999
523737443104747488710 ~1999
523747151104749430310 ~1999
5237485673456740542311 ~2003
523758659104751731910 ~1999
523758923104751784710 ~1999
523784879104756975910 ~1999
523790471104758094310 ~1999
523794923104758984710 ~1999
523796699104759339910 ~1999
523842251104768450310 ~1999
523847531104769506310 ~1999
523848359104769671910 ~1999
523861391104772278310 ~1999
523864619104772923910 ~1999
523864871104772974310 ~1999
523866851104773370310 ~1999
523879439104775887910 ~1999
523881791104776358310 ~1999
523895591419116472910 ~2001
523896491104779298310 ~1999
523906511104781302310 ~1999
523922519104784503910 ~1999
523934711104786942310 ~1999
523950923104790184710 ~1999
Exponent Prime Factor Digits Year
523956239104791247910 ~1999
523979063104795812710 ~1999
523997711104799542310 ~1999
524008547943215384710 ~2001
524030291104806058310 ~1999
524037191104807438310 ~1999
524044583104808916710 ~1999
524045999104809199910 ~1999
524049893733669850310 ~2001
524052839104810567910 ~1999
524056139104811227910 ~1999
524079401314447640710 ~2000
524083139104816627910 ~1999
524086991104817398310 ~1999
524100887419280709710 ~2001
524123783104824756710 ~1999
524126891104825378310 ~1999
524140607943453092710 ~2001
524140943104828188710 ~1999
524150773314490463910 ~2000
524155739104831147910 ~1999
524174663104834932710 ~1999
524191511104838302310 ~1999
524194681314516808710 ~2000
524195939104839187910 ~1999
Exponent Prime Factor Digits Year
524217119104843423910 ~1999
524225111104845022310 ~1999
524228951104845790310 ~1999
524254079104850815910 ~1999
524254319104850863910 ~1999
524289383104857876710 ~1999
524289599104857919910 ~1999
524304923104860984710 ~1999
524305871104861174310 ~1999
524311211104862242310 ~1999
524354921314612952710 ~2000
524364517314618710310 ~2000
524381917314629150310 ~2000
524386451104877290310 ~1999
524388911104877782310 ~1999
524400599104880119910 ~1999
524402891104880578310 ~1999
524414711104882942310 ~1999
524417279419533823310 ~2001
524420639104884127910 ~1999
524428211104885642310 ~1999
524445721314667432710 ~2000
524460143104892028710 ~1999
524469061314681436710 ~2000
5244862016713423372911 ~2004
Exponent Prime Factor Digits Year
5244889271783262351911 ~2002
524490311104898062310 ~1999
524493419104898683910 ~1999
524502263104900452710 ~1999
524507603104901520710 ~1999
524545643104909128710 ~1999
524555711104911142310 ~1999
524557751419646200910 ~2001
524558623524558623110 ~2001
524570897734399255910 ~2001
524586983104917396710 ~1999
524591993314755195910 ~2000
524592773314755663910 ~2000
524596139104919227910 ~1999
5246093873462421954311 ~2003
524613311104922662310 ~1999
524619899104923979910 ~1999
524663123104932624710 ~1999
524665859104933171910 ~1999
524666003104933200710 ~1999
524682299104936459910 ~1999
524682551944428591910 ~2001
524686091104937218310 ~1999
524723291104944658310 ~1999
524726123104945224710 ~1999
Home
4.843.404 digits
e-mail
25-06-08