Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
549192383109838476710 ~1999
549248783109849756710 ~1999
549255373329553223910 ~2000
549269531109853906310 ~1999
549271979109854395910 ~1999
549274679109854935910 ~1999
549279233329567539910 ~2000
549282659109856531910 ~1999
549286823109857364710 ~1999
549296261329577756710 ~2000
549306599109861319910 ~1999
549328859109865771910 ~1999
549342263109868452710 ~1999
549360187549360187110 ~2001
549365767549365767110 ~2001
5493678492966586384711 ~2003
549375863109875172710 ~1999
549396521329637912710 ~2000
549405929439524743310 ~2001
549427121329656272710 ~2000
549431471109886294310 ~1999
549436399549436399110 ~2001
549444593769222430310 ~2001
549449711109889942310 ~1999
549450899109890179910 ~1999
Exponent Prime Factor Digits Year
549486323109897264710 ~1999
549487811109897562310 ~1999
549507527439606021710 ~2001
549512399109902479910 ~1999
549519851109903970310 ~1999
549528877329717326310 ~2000
549538117329722870310 ~2000
549540493329724295910 ~2000
549567311109913462310 ~1999
549581759109916351910 ~1999
549596843109919368710 ~1999
549615179109923035910 ~1999
549640501329784300710 ~2000
549640859109928171910 ~1999
549646931109929386310 ~1999
549647821329788692710 ~2000
549679391109935878310 ~1999
549702971109940594310 ~1999
549707663109941532710 ~1999
549757277329854366310 ~2000
5497749433958379589711 ~2003
549803279109960655910 ~1999
549815401329889240710 ~2000
549819251109963850310 ~1999
549825257329895154310 ~2000
Exponent Prime Factor Digits Year
549831311109966262310 ~1999
549878111109975622310 ~1999
549882457329929474310 ~2000
549896531109979306310 ~1999
549897191109979438310 ~1999
5499151994509304631911 ~2003
5499184871319804368911 ~2002
549940691109988138310 ~1999
549978239109995647910 ~1999
549997979109999595910 ~1999
549998363109999672710 ~1999
550003931110000786310 ~1999
550015811110003162310 ~1999
550035659110007131910 ~1999
5500448572090170456711 ~2002
550048259110009651910 ~1999
550053851110010770310 ~1999
550058291110011658310 ~1999
550064951110012990310 ~1999
550081211110016242310 ~1999
550085423110017084710 ~1999
550087523110017504710 ~1999
550110371110022074310 ~1999
550115603110023120710 ~1999
5501464492970790824711 ~2003
Exponent Prime Factor Digits Year
550185371110037074310 ~1999
550205063110041012710 ~1999
550243451110048690310 ~1999
550255631110051126310 ~1999
550260331880416529710 ~2001
550262351110052470310 ~1999
550271471110054294310 ~1999
550274723110054944710 ~1999
550275497440220397710 ~2001
550279283110055856710 ~1999
550290271550290271110 ~2001
550294931110058986310 ~1999
550297679110059535910 ~1999
550303079110060615910 ~1999
550320059110064011910 ~1999
550323083110064616710 ~1999
550342679110068535910 ~1999
550361099110072219910 ~1999
550383923110076784710 ~1999
550384223110076844710 ~1999
550414079110082815910 ~1999
550419959110083991910 ~1999
550423403110084680710 ~1999
550424579110084915910 ~1999
550429163110085832710 ~1999
Home
4.724.182 digits
e-mail
25-04-13