Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
526007759105201551910 ~1999
526017911105203582310 ~1999
526019111105203822310 ~1999
526027763105205552710 ~1999
526031879105206375910 ~1999
526033517736446923910 ~2001
526042241315625344710 ~2000
5260512171262522920911 ~2002
526055039105211007910 ~1999
526073413315644047910 ~2000
526079383526079383110 ~2001
526090979105218195910 ~1999
526093391105218678310 ~1999
526098977736538567910 ~2001
526195031105239006310 ~1999
526200599105240119910 ~1999
526210703105242140710 ~1999
526248973315749383910 ~2000
526253723105250744710 ~1999
526258079105251615910 ~1999
526274123105254824710 ~1999
526283423105256684710 ~1999
526320517315792310310 ~2000
526322759105264551910 ~1999
526326659105265331910 ~1999
Exponent Prime Factor Digits Year
526329959105265991910 ~1999
526362953315817771910 ~2000
526364603105272920710 ~1999
526372271105274454310 ~1999
526379351105275870310 ~1999
526381343105276268710 ~1999
526386719105277343910 ~1999
526414991105282998310 ~1999
526419431105283886310 ~1999
526422503105284500710 ~1999
526446923105289384710 ~1999
526460999105292199910 ~1999
526486739105297347910 ~1999
526487627947677728710 ~2001
526490339105298067910 ~1999
526500239105300047910 ~1999
526507511105301502310 ~1999
526508821315905292710 ~2000
5265417472632708735111 ~2003
526561019105312203910 ~1999
5265817992211643555911 ~2002
526594501315956700710 ~2000
526595999105319199910 ~1999
526599179421279343310 ~2001
526610939105322187910 ~1999
Exponent Prime Factor Digits Year
5266116291579834887111 ~2002
526614853315968911910 ~2000
5266291391263909933711 ~2002
526651561315990936710 ~2000
526661363105332272710 ~1999
526665071105333014310 ~1999
526678441842685505710 ~2001
526705757316023454310 ~2000
526721483105344296710 ~1999
526738981842782369710 ~2001
526746971105349394310 ~1999
526750379105350075910 ~1999
526752959105350591910 ~1999
526817099105363419910 ~1999
526838113316102867910 ~2000
526839983105367996710 ~1999
526840991105368198310 ~1999
526845577316107346310 ~2000
526849943105369988710 ~1999
526862797316117678310 ~2000
526864033316118419910 ~2000
526864477316118686310 ~2000
526866239105373247910 ~1999
526870979105374195910 ~1999
526874261316124556710 ~2000
Exponent Prime Factor Digits Year
526889183105377836710 ~1999
526920239105384047910 ~1999
526929917421543933710 ~2001
526936231526936231110 ~2001
526936859105387371910 ~1999
526952903105390580710 ~1999
526958339105391667910 ~1999
526966883105393376710 ~1999
526969973316181983910 ~2000
526970159105394031910 ~1999
526982723105396544710 ~1999
526988093316192855910 ~2000
526992701316195620710 ~2000
527052803105410560710 ~1999
5270530013267728606311 ~2003
527077151105415430310 ~1999
527080901316248540710 ~2000
527085983105417196710 ~1999
527087591105417518310 ~1999
527094539105418907910 ~1999
527104871105420974310 ~1999
527115503105423100710 ~1999
527132041843411265710 ~2001
527137199105427439910 ~1999
527159051105431810310 ~1999
Home
4.843.404 digits
e-mail
25-06-08