Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
579649523115929904710 ~1999
579649859115929971910 ~1999
579660839115932167910 ~1999
579664859115932971910 ~1999
579685517347811310310 ~2001
579690557347814334310 ~2001
5796938596492571220911 ~2004
579736931115947386310 ~1999
579737531115947506310 ~1999
579764483115952896710 ~1999
579772691115954538310 ~1999
5797809071043605632711 ~2002
5797970033246863216911 ~2003
579821111115964222310 ~1999
579822011115964402310 ~1999
579920729463936583310 ~2001
579952283115990456710 ~1999
579981323115996264710 ~1999
579988463115997692710 ~1999
580003007464002405710 ~2001
580014251116002850310 ~1999
580019123116003824710 ~1999
580040647580040647110 ~2001
580080911116016182310 ~1999
580116263116023252710 ~1999
Exponent Prime Factor Digits Year
580116479116023295910 ~1999
580121831116024366310 ~1999
580143089464114471310 ~2001
580147783580147783110 ~2001
580177463116035492710 ~1999
580182191116036438310 ~1999
580191263116038252710 ~1999
580217171116043434310 ~1999
580218311116043662310 ~1999
580246619116049323910 ~1999
5802659231392638215311 ~2002
580266779116053355910 ~1999
580291031116058206310 ~1999
5803059377892160743311 ~2004
5803070092785473643311 ~2003
580314191464251352910 ~2001
580317937348190762310 ~2001
580326083116065216710 ~1999
580336979116067395910 ~1999
580348871116069774310 ~1999
580416563116083312710 ~1999
580426859116085371910 ~1999
580458839116091767910 ~1999
580488431116097686310 ~1999
580494191116098838310 ~1999
Exponent Prime Factor Digits Year
580507043116101408710 ~1999
5805317692206020722311 ~2003
580579367464463493710 ~2001
580642913348385747910 ~2001
580648571116129714310 ~1999
580653263116130652710 ~1999
580663121348397872710 ~2001
580686503116137300710 ~1999
580688183116137636710 ~1999
580697681348418608710 ~2001
580733623580733623110 ~2001
580735139116147027910 ~1999
580738271116147654310 ~1999
5807393531277626576711 ~2002
5807502131393800511311 ~2002
580778039116155607910 ~1999
580778371580778371110 ~2001
580802291116160458310 ~1999
580809851116161970310 ~1999
580843031116168606310 ~1999
5808464591045523626311 ~2002
580850591116170118310 ~1999
580856347580856347110 ~2001
580869743116173948710 ~1999
580880243116176048710 ~1999
Exponent Prime Factor Digits Year
580884599116176919910 ~1999
580903679116180735910 ~1999
580906217348543730310 ~2001
580913699116182739910 ~1999
580938907580938907110 ~2001
5809450614182804439311 ~2003
580946543116189308710 ~1999
580965839116193167910 ~1999
580992197348595318310 ~2001
581024401348614640710 ~2001
581041469813458056710 ~2002
581042963116208592710 ~1999
581050511116210102310 ~1999
581052233348631339910 ~2001
581057723116211544710 ~1999
581071573348642943910 ~2001
581107451116221490310 ~1999
581113343116222668710 ~1999
5811560831394774599311 ~2002
581166143116233228710 ~1999
581174137348704482310 ~2001
581181131116236226310 ~1999
581201549464961239310 ~2001
581230703116246140710 ~1999
5812331898718497835111 ~2004
Home
4.724.182 digits
e-mail
25-04-13