Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
578391181347034708710 ~2001
578401919115680383910 ~1999
578404133347042479910 ~2001
578410919115682183910 ~1999
578413103115682620710 ~1999
578417657347050594310 ~2001
578430449462744359310 ~2001
578437493347062495910 ~2001
578463299115692659910 ~1999
5784707212198188739911 ~2003
578535983115707196710 ~1999
578539337462831469710 ~2001
578584211115716842310 ~1999
578584807578584807110 ~2001
578586161347151696710 ~2001
578586773347152063910 ~2001
578593397347156038310 ~2001
578626043115725208710 ~1999
578629223115725844710 ~1999
578633801462907040910 ~2001
578660003115732000710 ~1999
578684663115736932710 ~1999
578686963578686963110 ~2001
578690117347214070310 ~2001
578726399115745279910 ~1999
Exponent Prime Factor Digits Year
578737751115747550310 ~1999
578738399115747679910 ~1999
57876511111112290131312 ~2004
578779681347267808710 ~2001
5787832431504836431911 ~2002
578787161463029728910 ~2001
578796359115759271910 ~1999
578886923115777384710 ~1999
578896993347338195910 ~2001
578898011115779602310 ~1999
578900951115780190310 ~1999
578906309810468832710 ~2001
578914943115782988710 ~1999
5789392431389454183311 ~2002
578941403115788280710 ~1999
578950511115790102310 ~1999
578955599115791119910 ~1999
5789750811852720259311 ~2002
578986403115797280710 ~1999
578986703115797340710 ~1999
578996927463197541710 ~2001
579013613347408167910 ~2001
579022943115804588710 ~1999
579038231115807646310 ~1999
579052583115810516710 ~1999
Exponent Prime Factor Digits Year
579053599579053599110 ~2001
5790582011737174603111 ~2002
5790674711042321447911 ~2002
579074339115814867910 ~1999
579096431115819286310 ~1999
5790988511042377931911 ~2002
579118511115823702310 ~1999
579123791115824758310 ~1999
579182321347509392710 ~2001
579221033347532619910 ~2001
5792423571390181656911 ~2002
579244399579244399110 ~2001
579257951115851590310 ~1999
579263819115852763910 ~1999
579264461347558676710 ~2001
579265619115853123910 ~1999
579301109463440887310 ~2001
579308039463446431310 ~2001
579314231115862846310 ~1999
5793181211737954363111 ~2002
5793480611274565734311 ~2002
579354731115870946310 ~1999
579363431463490744910 ~2001
579364823115872964710 ~1999
579384853347630911910 ~2001
Exponent Prime Factor Digits Year
579404237347642542310 ~2001
579407063115881412710 ~1999
579414743115882948710 ~1999
579419999115883999910 ~1999
579423023115884604710 ~1999
579441683115888336710 ~1999
5794517231970135858311 ~2002
579466259115893251910 ~1999
5794962731390791055311 ~2002
579499163115899832710 ~1999
579535843579535843110 ~2001
579537367579537367110 ~2001
579539483115907896710 ~1999
579549053347729431910 ~2001
5795544492318217796111 ~2003
579565991115913198310 ~1999
579567539115913507910 ~1999
579574199115914839910 ~1999
579574379115914875910 ~1999
579578423115915684710 ~1999
579587639115917527910 ~1999
579607211115921442310 ~1999
579609929463687943310 ~2001
579613739115922747910 ~1999
579624119115924823910 ~1999
Home
4.724.182 digits
e-mail
25-04-13