Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4091830918183661839 ~1998
4092160011964236804911 ~2002
4092176638184353279 ~1998
409232587654772139310 ~2000
4092337918184675839 ~1998
409234517245540710310 ~1999
409234853245540911910 ~1999
409237001245542200710 ~1999
4092480672619187628911 ~2002
4092505918185011839 ~1998
4092507718185015439 ~1998
4092554398185108799 ~1998
4092584398185168799 ~1998
4092689638185379279 ~1998
4092770518185541039 ~1998
4092973918185947839 ~1998
4093008838186017679 ~1998
4093035471064189222311 ~2001
4093145998186291999 ~1998
4093176598186353199 ~1998
409330253573062354310 ~2000
4093371718186743439 ~1998
4093395598186791199 ~1998
4093417438186834879 ~1998
409357393245614435910 ~1999
Exponent Prime Factor Digits Year
4093582198187164399 ~1998
4093625998187251999 ~1998
409378433573129806310 ~2000
4093905718187811439 ~1998
4093912438187824879 ~1998
409403597327522877710 ~2000
4094045471637618188111 ~2001
409404937245642962310 ~1999
409409747327527797710 ~2000
4094205238188410479 ~1998
4094216296878283367311 ~2003
4094279398188558799 ~1998
4094284438188568879 ~1998
4094309518188619039 ~1998
4094340718188681439 ~1998
4094474211555900199911 ~2001
4094532838189065679 ~1998
4094546511965382324911 ~2002
409462589573247624710 ~2000
409474553573264374310 ~2000
4094889238189778479 ~1998
409502837245701702310 ~1999
4095103798190207599 ~1998
4095132598190265199 ~1998
4095426718190853439 ~1998
Exponent Prime Factor Digits Year
4095685918191371839 ~1998
409572461245743476710 ~1999
409607477245764486310 ~1999
409611817245767090310 ~1999
4096159918192319839 ~1998
409627051655403281710 ~2000
409636319737345374310 ~2001
4096591631392841154311 ~2001
409676921245806152710 ~1999
4096866598193733199 ~1998
409686821245812092710 ~1999
4096917598193835199 ~1998
409694273245816563910 ~1999
4097073598194147199 ~1998
409709561245825736710 ~1999
4097124838194249679 ~1998
4097135998194271999 ~1998
4097272438194544879 ~1998
409746569327797255310 ~2000
409757837245854702310 ~1999
4097597998195195999 ~1998
4097696638195393279 ~1998
4097765998195531999 ~1998
409780081245868048710 ~1999
4097925118195850239 ~1998
Exponent Prime Factor Digits Year
409801237983522968910 ~2001
4098240718196481439 ~1998
409864061327891248910 ~2000
4098711838197423679 ~1998
4098745798197491599 ~1998
409915477245949286310 ~1999
4099170718198341439 ~1998
4099347118198694239 ~1998
4099398238198796479 ~1998
409952353245971411910 ~1999
4099526638199053279 ~1998
4099527238199054479 ~1998
409953979409953979110 ~2000
4099721518199443039 ~1998
4099727331229918199111 ~2001
409988053245992831910 ~1999
410020097246012058310 ~1999
4100221918200443839 ~1998
410024081246014448710 ~1999
4100325838200651679 ~1998
4100440318200880639 ~1998
4100593198201186399 ~1998
410060173246036103910 ~1999
4100768998201537999 ~1998
4100883238201766479 ~1998
Home
4.933.056 digits
e-mail
25-07-20