Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
622778593373667155910 ~2001
6227830131992905641711 ~2003
622804751124560950310 ~2000
622810999622810999110 ~2001
622828163124565632710 ~2000
622831871124566374310 ~2000
622874699124574939910 ~2000
622896083124579216710 ~2000
622903781498323024910 ~2001
622926133373755679910 ~2001
622930943124586188710 ~2000
622934831498347864910 ~2001
622951853373771111910 ~2001
6229594731495102735311 ~2002
622972631124594526310 ~2000
622978019124595603910 ~2000
622984051622984051110 ~2001
622986869498389495310 ~2001
622991651124598330310 ~2000
6230362215981147721711 ~2004
623038991124607798310 ~2000
623060051498448040910 ~2001
623096399124619279910 ~2000
623133611124626722310 ~2000
623136743124627348710 ~2000
Exponent Prime Factor Digits Year
6231666591994133308911 ~2003
623167271124633454310 ~2000
6232189871121794176711 ~2002
623219783124643956710 ~2000
623226899124645379910 ~2000
623236199124647239910 ~2000
623246081498596864910 ~2001
623254811124650962310 ~2000
623312849498650279310 ~2001
623348981374009388710 ~2001
623368439124673687910 ~2000
623374757374024854310 ~2001
623390039124678007910 ~2000
623400143124680028710 ~2000
6234049313117024655111 ~2003
623405231498724184910 ~2001
623409179124681835910 ~2000
623409863124681972710 ~2000
623428753374057251910 ~2001
623452103124690420710 ~2000
623463521498770816910 ~2001
6234693591995101948911 ~2003
623471363124694272710 ~2000
623475431124695086310 ~2000
6234876191122277714311 ~2002
Exponent Prime Factor Digits Year
623487857872882999910 ~2002
623494871124698974310 ~2000
623496329498797063310 ~2001
623496821498797456910 ~2001
623519483124703896710 ~2000
623538731124707746310 ~2000
623544539124708907910 ~2000
623584919124716983910 ~2000
623591351498873080910 ~2001
623596199124719239910 ~2000
623605757374163454310 ~2001
623613911124722782310 ~2000
623616923124723384710 ~2000
623628671498902936910 ~2001
623657483124731496710 ~2000
623659459623659459110 ~2001
623691841374215104710 ~2001
623694671124738934310 ~2000
623700359124740071910 ~2000
623712863124742572710 ~2000
6237171671122690900711 ~2002
6237185511122693391911 ~2002
6237229193118614595111 ~2003
623729003124745800710 ~2000
623734799124746959910 ~2000
Exponent Prime Factor Digits Year
623757443124751488710 ~2000
623790071124758014310 ~2000
623794177374276506310 ~2001
623799119124759823910 ~2000
623821201374292720710 ~2001
623830583124766116710 ~2000
623839763124767952710 ~2000
623841371124768274310 ~2000
623842343124768468710 ~2000
623879099124775819910 ~2000
623893271124778654310 ~2000
623895179124779035910 ~2000
623933333374359999910 ~2001
623935373374361223910 ~2001
623941987623941987110 ~2001
623948167623948167110 ~2001
623955911124791182310 ~2000
623964083124792816710 ~2000
6240233391123242010311 ~2002
624038879124807775910 ~2000
624042491124808498310 ~2000
624054719124810943910 ~2000
624096611124819322310 ~2000
624106673873749342310 ~2002
624141263124828252710 ~2000
Home
4.724.182 digits
e-mail
25-04-13