Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
624146233998633972910 ~2002
624156119124831223910 ~2000
624157361374494416710 ~2001
624161123124832224710 ~2000
624185483124837096710 ~2000
624196799124839359910 ~2000
624212753374527651910 ~2001
624230279124846055910 ~2000
624230963124846192710 ~2000
624265751124853150310 ~2000
624271643124854328710 ~2000
624277883124855576710 ~2000
624285839124857167910 ~2000
624293399124858679910 ~2000
624304511124860902310 ~2000
624313439124862687910 ~2000
624332519124866503910 ~2000
624341759124868351910 ~2000
624342317499473853710 ~2001
624344471124868894310 ~2000
624347861374608716710 ~2001
624349031124869806310 ~2000
624350549499480439310 ~2001
624369563124873912710 ~2000
624382049874134868710 ~2002
Exponent Prime Factor Digits Year
6244420311623549280711 ~2002
6244478691498674885711 ~2002
624456719124891343910 ~2000
624492023124898404710 ~2000
624499223124899844710 ~2000
624517757374710654310 ~2001
624522779124904555910 ~2000
624538973874354562310 ~2002
624555131124911026310 ~2000
624563843124912768710 ~2000
624591923124918384710 ~2000
624600299124920059910 ~2000
624607811124921562310 ~2000
624631379124926275910 ~2000
624654419124930883910 ~2000
6246631392498652556111 ~2003
624663839124932767910 ~2000
6246696292373744590311 ~2003
624675263124935052710 ~2000
624680041374808024710 ~2001
624687179124937435910 ~2000
624716831124943366310 ~2000
624720557374832334310 ~2001
624746879124949375910 ~2000
624747191124949438310 ~2000
Exponent Prime Factor Digits Year
624749443624749443110 ~2001
624755639124951127910 ~2000
624773819124954763910 ~2000
624787481374872488710 ~2001
624795599124959119910 ~2000
624825683124965136710 ~2000
6248353311999473059311 ~2003
624843419124968683910 ~2000
624843911124968782310 ~2000
624850679124970135910 ~2000
624881137374928682310 ~2001
624893573374936143910 ~2001
624901271499921016910 ~2001
624908951124981790310 ~2000
624950747499960597710 ~2001
6249999791124999962311 ~2002
625015199125003039910 ~2000
625032899125006579910 ~2000
6250430171875129051111 ~2003
625057781375034668710 ~2001
625058111125011622310 ~2000
625062983125012596710 ~2000
6250647471625168342311 ~2002
625073303125014660710 ~2000
625075751125015150310 ~2000
Exponent Prime Factor Digits Year
625150271125030054310 ~2000
625180121375108072710 ~2001
625181663125036332710 ~2000
625184123125036824710 ~2000
625194851125038970310 ~2000
625207553375124531910 ~2001
625219237375131542310 ~2001
625266503125053300710 ~2000
625328939125065787910 ~2000
625342859125068571910 ~2000
625356839125071367910 ~2000
625359941500287952910 ~2001
625364561375218736710 ~2001
625367279125073455910 ~2000
625367399125073479910 ~2000
625372883125074576710 ~2000
625373291125074658310 ~2000
625396679125079335910 ~2000
6254453931876336179111 ~2003
625456523125091304710 ~2000
625462679125092535910 ~2000
625481963125096392710 ~2000
625492583125098516710 ~2000
625499051125099810310 ~2000
625502201375301320710 ~2001
Home
4.724.182 digits
e-mail
25-04-13