Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
635814551127162910310 ~2000
635836199127167239910 ~2000
6358806071017408971311 ~2002
635891261381534756710 ~2001
6359000772925140354311 ~2003
635908211127181642310 ~2000
635916371127183274310 ~2000
63591723112209610835312 ~2005
635924519127184903910 ~2000
635930759127186151910 ~2000
635934983127186996710 ~2000
635937271635937271110 ~2001
635950751127190150310 ~2000
635954159508763327310 ~2001
635960579127192115910 ~2000
63596401912846473183912 ~2005
635965619127193123910 ~2000
635966819127193363910 ~2000
635979181381587508710 ~2001
6360046432035214857711 ~2003
636010811127202162310 ~2000
636012563127202512710 ~2000
636037403127207480710 ~2000
636066131127213226310 ~2000
636071617381642970310 ~2001
Exponent Prime Factor Digits Year
636080201508864160910 ~2001
636088513381653107910 ~2001
636092969508874375310 ~2001
636093179127218635910 ~2000
636093203127218640710 ~2000
636117193381670315910 ~2001
636123083127224616710 ~2000
636136103127227220710 ~2000
636149471127229894310 ~2000
636163481508930784910 ~2001
636170459127234091910 ~2000
636172919127234583910 ~2000
636178223127235644710 ~2000
636183923127236784710 ~2000
636193223127238644710 ~2000
6361989491526877477711 ~2002
636199643127239928710 ~2000
636202559127240511910 ~2000
636206183127241236710 ~2000
636216011127243202310 ~2000
636233771127246754310 ~2000
636267301381760380710 ~2001
636295223127259044710 ~2000
636308891127261778310 ~2000
6363100211018096033711 ~2002
Exponent Prime Factor Digits Year
636333671127266734310 ~2000
636351767509081413710 ~2001
6363715511145468791911 ~2002
636375149509100119310 ~2001
636381569890934196710 ~2002
636385703127277140710 ~2000
636390791127278158310 ~2000
636400211127280042310 ~2000
636421223127284244710 ~2000
636441779127288355910 ~2000
636452923636452923110 ~2001
636459623127291924710 ~2000
636479579127295915910 ~2000
636495221381897132710 ~2001
636501133381900679910 ~2001
636503459127300691910 ~2000
636587221381952332710 ~2001
636592031127318406310 ~2000
636601331127320266310 ~2000
6366182871145912916711 ~2002
636636359127327271910 ~2000
636648431127329686310 ~2000
636658343127331668710 ~2000
636729011127345802310 ~2000
636756737891459431910 ~2002
Exponent Prime Factor Digits Year
636763499127352699910 ~2000
636783743127356748710 ~2000
636789733382073839910 ~2001
636812003127362400710 ~2000
636827423127365484710 ~2000
636829031127365806310 ~2000
636854411127370882310 ~2000
636879851127375970310 ~2000
636893291127378658310 ~2000
636894367636894367110 ~2001
6369241571019078651311 ~2002
636939763636939763110 ~2001
636941171127388234310 ~2000
636948527509558821710 ~2001
636968399127393679910 ~2000
636985403127397080710 ~2000
636987839127397567910 ~2000
636988811127397762310 ~2000
636991499127398299910 ~2000
637003151127400630310 ~2000
637019543127403908710 ~2000
637057913382234747910 ~2001
637071137509656909710 ~2001
637078031127415606310 ~2000
637084583127416916710 ~2000
Home
4.724.182 digits
e-mail
25-04-13