Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
569489939113897987910 ~1999
569501711113900342310 ~1999
569524523113904904710 ~1999
569536727455629381710 ~2001
569582693797415770310 ~2001
569586869455669495310 ~2001
569620979113924195910 ~1999
569625011113925002310 ~1999
569637443113927488710 ~1999
569645039113929007910 ~1999
569646373341787823910 ~2001
569660999113932199910 ~1999
569662141341797284710 ~2001
569663177797528447910 ~2001
569677441341806464710 ~2001
569691719455753375310 ~2001
569711951113942390310 ~1999
569722739113944547910 ~1999
569723279113944655910 ~1999
569751137797651591910 ~2001
569755139113951027910 ~1999
569775203113955040710 ~1999
569781743113956348710 ~1999
5697872271025617008711 ~2002
569826599113965319910 ~1999
Exponent Prime Factor Digits Year
569834351113966870310 ~1999
569856491113971298310 ~1999
569885903113977180710 ~1999
569913131113982626310 ~1999
569923117911876987310 ~2002
569938331113987666310 ~1999
569970083113994016710 ~1999
569970491113994098310 ~1999
569973577341984146310 ~2001
569982437341989462310 ~2001
569983283113996656710 ~1999
570014363114002872710 ~1999
570018797342011278310 ~2001
570036683114007336710 ~1999
570044837798062771910 ~2001
5700553137638741194311 ~2004
570066379570066379110 ~2001
5701011671026182100711 ~2002
570107183114021436710 ~1999
570122699114024539910 ~1999
570154919114030983910 ~1999
570166693912266708910 ~2002
570182243114036448710 ~1999
570191351114038270310 ~1999
570206831114041366310 ~1999
Exponent Prime Factor Digits Year
570227771114045554310 ~1999
570256223114051244710 ~1999
570260819114052163910 ~1999
570277397798388355910 ~2001
570280811114056162310 ~1999
570295619114059123910 ~1999
570326303114065260710 ~1999
570365039114073007910 ~1999
570381419114076283910 ~1999
570394403114078880710 ~1999
570398711114079742310 ~1999
570419099114083819910 ~1999
570422519114084503910 ~1999
570438551114087710310 ~1999
570459359114091871910 ~1999
570489743114097948710 ~1999
570531623114106324710 ~1999
570544721342326832710 ~2001
570549097912878555310 ~2002
570559163114111832710 ~1999
570568151114113630310 ~1999
570571873342343123910 ~2001
570597473342358483910 ~2001
570607679114121535910 ~1999
570608021456486416910 ~2001
Exponent Prime Factor Digits Year
570609983114121996710 ~1999
570626051114125210310 ~1999
570641999114128399910 ~1999
570655499114131099910 ~1999
570668459114133691910 ~1999
570681239114136247910 ~1999
5706915671369659760911 ~2002
570704131570704131110 ~2001
570720179114144035910 ~1999
570726179114145235910 ~1999
570780911114156182310 ~1999
570781619114156323910 ~1999
570794401342476640710 ~2001
570804263114160852710 ~1999
570816023114163204710 ~1999
570818471114163694310 ~1999
570841787456673429710 ~2001
570847463114169492710 ~1999
570867379570867379110 ~2001
570868283114173656710 ~1999
570880031114176006310 ~1999
570887549456710039310 ~2001
570895883114179176710 ~1999
570896531114179306310 ~1999
570918287456734629710 ~2001
Home
4.843.404 digits
e-mail
25-06-08