Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
678704399135740879910 ~2000
678708479135741695910 ~2000
678708479542966783310
678716639135743327910 ~2000
678740399135748079910 ~2000
678750389950250544710 ~2002
678756371135751274310 ~2000
678761423135752284710 ~2000
678773351135754670310 ~2000
678844403135768880710 ~2000
678892031135778406310 ~2000
6789114131086258260911 ~2002
678947663135789532710 ~2000
6789516414888451815311 ~2004
678966403678966403110 ~2002
679011023135802204710 ~2000
679075811135815162310 ~2000
679086059135817211910 ~2000
679098899543279119310 ~2001
679123031135824606310 ~2000
679134551135826910310 ~2000
679137959543310367310 ~2001
679144397950802155910 ~2002
679155599543324479310 ~2001
679167803135833560710 ~2000
Exponent Prime Factor Digits Year
679181423135836284710 ~2000
679181663135836332710 ~2000
679184351135836870310 ~2000
679196977407518186310 ~2001
679206551135841310310 ~2000
679238177543390541710 ~2001
679250003135850000710 ~2000
679250459135850091910 ~2000
679259051135851810310 ~2000
679265701407559420710 ~2001
6792678194890728296911 ~2004
679282559135856511910 ~2000
679299211679299211110 ~2002
679318163135863632710 ~2000
679324637407594782310 ~2001
679330643135866128710 ~2000
6793323072717329228111 ~2003
679335071135867014310 ~2000
679349243135869848710 ~2000
679352279135870455910 ~2000
679353011135870602310 ~2000
679359251135871850310 ~2000
679367411135873482310 ~2000
679367603135873520710 ~2000
679384571135876914310 ~2000
Exponent Prime Factor Digits Year
679387139135877427910 ~2000
679404059135880811910 ~2000
679420837407652502310 ~2001
679440383135888076710 ~2000
679456859135891371910 ~2000
679459439135891887910 ~2000
679462583135892516710 ~2000
679476431135895286310 ~2000
679501919135900383910 ~2000
679502399135900479910 ~2000
679521371135904274310 ~2000
679531283135906256710 ~2000
679576643135915328710 ~2000
679580963135916192710 ~2000
6795887692038766307111 ~2003
679619723135923944710 ~2000
679629683135925936710 ~2000
679661579135932315910 ~2000
679663331543730664910 ~2001
679685291135937058310 ~2000
679687357407812414310 ~2001
679691063135938212710 ~2000
679702511135940502310 ~2000
679712953407827771910 ~2001
679776683135955336710 ~2000
Exponent Prime Factor Digits Year
679780103135956020710 ~2000
679795871135959174310 ~2000
679834439135966887910 ~2000
679860371135972074310 ~2000
679870573407922343910 ~2001
679951763135990352710 ~2000
679957979135991595910 ~2000
679967243135993448710 ~2000
679971317543977053710 ~2001
679990991135998198310 ~2000
680010911136002182310 ~2000
680012939136002587910 ~2000
680017199136003439910 ~2000
680033219136006643910 ~2000
680038243680038243110 ~2002
680047499136009499910 ~2000
680072231136014446310 ~2000
680078831136015766310 ~2000
680121251136024250310 ~2000
68013633711290263194312 ~2005
680138831136027766310 ~2000
680147243136029448710 ~2000
680148251136029650310 ~2000
680177639544142111310 ~2001
680183579136036715910 ~2000
Home
4.724.182 digits
e-mail
25-04-13