Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
583182731116636546310 ~1999
583198943116639788710 ~1999
583201631116640326310 ~1999
583204177349922506310 ~2001
583251083116650216710 ~1999
583296671116659334310 ~1999
583316051466652840910 ~2001
583317419116663483910 ~1999
583318469816645856710 ~2002
583349411116669882310 ~1999
583370219116674043910 ~1999
583383433350030059910 ~2001
583384001466707200910 ~2001
583409483116681896710 ~1999
5834222412683742308711 ~2003
583438679116687735910 ~1999
583460243116692048710 ~1999
5834739914784486726311 ~2003
583495093350097055910 ~2001
583497983116699596710 ~1999
583516523116703304710 ~1999
583519151116703830310 ~1999
5836048671050488760711 ~2002
583687199116737439910 ~1999
5836943691751083107111 ~2002
Exponent Prime Factor Digits Year
583709171466967336910 ~2001
583748831116749766310 ~1999
583774151116754830310 ~1999
583775183116755036710 ~1999
583784651116756930310 ~1999
583791541350274924710 ~2001
583792799116758559910 ~1999
583798619116759723910 ~1999
583814879116762975910 ~1999
583834991116766998310 ~1999
583845937350307562310 ~2001
583853639116770727910 ~1999
583869551116773910310 ~1999
583869701350321820710 ~2001
583915763116783152710 ~1999
583944929467155943310 ~2001
583972393350383435910 ~2001
583993583116798716710 ~1999
58399789368561352638312 ~2006
584018159116803631910 ~1999
584050979116810195910 ~1999
584077937350446762310 ~2001
584077961350446776710 ~2001
584078137350446882310 ~2001
584104993350462995910 ~2001
Exponent Prime Factor Digits Year
584109059116821811910 ~1999
5841376511051447771911 ~2002
584142011116828402310 ~1999
584148839116829767910 ~1999
584161139116832227910 ~1999
584171233350502739910 ~2001
584173319116834663910 ~1999
584187239116837447910 ~1999
584205959116841191910 ~1999
584207699116841539910 ~1999
584223553350534131910 ~2001
584233079467386463310 ~2001
584239703116847940710 ~1999
584244313350546587910 ~2001
584246111116849222310 ~1999
5842542731402210255311 ~2002
584254949467403959310 ~2001
584257463116851492710 ~1999
584273939116854787910 ~1999
584278181350566908710 ~2001
584304599116860919910 ~1999
58432588313556360485712 ~2005
584346551116869310310 ~1999
584362759584362759110 ~2001
584382923116876584710 ~1999
Exponent Prime Factor Digits Year
5843914811753174443111 ~2002
584405903116881180710 ~1999
584416271116883254310 ~1999
584418713350651227910 ~2001
584446481350667888710 ~2001
584447219116889443910 ~1999
584454617350672770310 ~2001
584462653350677591910 ~2001
584481701350689020710 ~2001
5844860471987252559911 ~2002
584492873350695723910 ~2001
584524091116904818310 ~1999
584555903116911180710 ~1999
584577551116915510310 ~1999
584577923116915584710 ~1999
584651357350790814310 ~2001
584671859116934371910 ~1999
584686859116937371910 ~1999
584690423116938084710 ~1999
584695283116939056710 ~1999
584709371116941874310 ~1999
584731739116946347910 ~1999
584737343116947468710 ~1999
584742551116948510310 ~1999
584767409467813927310 ~2001
Home
4.843.404 digits
e-mail
25-06-08