Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
680190503136038100710 ~2000
680192459136038491910 ~2000
680198399136039679910 ~2000
680230079136046015910 ~2000
680257751136051550310 ~2000
680263693408158215910 ~2001
680304203136060840710 ~2000
680308451136061690310 ~2000
680308523136061704710 ~2000
680312183136062436710 ~2000
680315683680315683110 ~2002
680327821408196692710 ~2001
6803332211496733086311 ~2003
680357233408214339910 ~2001
680387723136077544710 ~2000
680402363136080472710 ~2000
680417603136083520710 ~2000
680428559136085711910 ~2000
680433431136086686310 ~2000
680435579136087115910 ~2000
680447639136089527910 ~2000
680450087544360069710 ~2001
6804623092041386927111 ~2003
680503541408302124710 ~2001
680540713408324427910 ~2001
Exponent Prime Factor Digits Year
680561939136112387910 ~2000
680571263136114252710 ~2000
680574683136114936710 ~2000
680630591136126118310 ~2000
680641961408385176710 ~2001
680679143136135828710 ~2000
680687459136137491910 ~2000
680693963136138792710 ~2000
680703143136140628710 ~2000
680759591136151918310 ~2000
680767757544614205710 ~2001
680813051136162610310 ~2000
680823959136164791910 ~2000
680824223136164844710 ~2000
680845637408507382310 ~2001
680889659136177931910 ~2000
680892791136178558310 ~2000
680901779136180355910 ~2000
680903843136180768710 ~2000
680912753408547651910 ~2001
680944421544755536910 ~2001
680952491136190498310 ~2000
680974223136194844710 ~2000
680975051136195010310 ~2000
680977027680977027110 ~2002
Exponent Prime Factor Digits Year
680979443136195888710 ~2000
680988449544790759310 ~2001
680999639136199927910 ~2000
681005471136201094310 ~2000
681016883136203376710 ~2000
681017861408610716710 ~2001
681051011136210202310 ~2000
681055031136211006310 ~2000
681058277544846621710 ~2001
681074063136214812710 ~2000
681085043136217008710 ~2000
681101831136220366310 ~2000
681105979681105979110 ~2002
681107243136221448710 ~2000
6811453973678185143911 ~2003
681156401408693840710 ~2001
681158111136231622310 ~2000
6811776911089884305711 ~2002
681231731136246346310 ~2000
681232199544985759310 ~2001
6812622431635029383311 ~2003
6812661914905116575311 ~2004
681269003136253800710 ~2000
681312001408787200710 ~2001
681315611136263122310 ~2000
Exponent Prime Factor Digits Year
681320597408792358310 ~2001
681328559136265711910 ~2000
681329963136265992710 ~2000
681335939136267187910 ~2000
681340763136268152710 ~2000
681346331136269266310 ~2000
681372239136274447910 ~2000
681422723136284544710 ~2000
681429503136285900710 ~2000
681443593408866155910 ~2001
681455087545164069710 ~2001
681465971136293194310 ~2000
681497891136299578310 ~2000
681552419136310483910 ~2000
681583739136316747910 ~2000
681587759136317551910 ~2000
681589049545271239310 ~2001
681595763136319152710 ~2000
6815978231090556516911 ~2002
681629411136325882310 ~2000
681639851136327970310 ~2000
681659063136331812710 ~2000
681660911136332182310 ~2000
681665219136333043910 ~2000
681672143136334428710 ~2000
Home
4.724.182 digits
e-mail
25-04-13